These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

932 related articles for article (PubMed ID: 19826053)

  • 1. Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism.
    Tamura K; Makino A; Hullin-Matsuda F; Kobayashi T; Furihata M; Chung S; Ashida S; Miki T; Fujioka T; Shuin T; Nakamura Y; Nakagawa H
    Cancer Res; 2009 Oct; 69(20):8133-40. PubMed ID: 19826053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression.
    Pizer ES; Pflug BR; Bova GS; Han WF; Udan MS; Nelson JB
    Prostate; 2001 May; 47(2):102-10. PubMed ID: 11340632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased lipogenesis in steroid-responsive cancer cells: mechanisms of regulation, role in cancer cell biology and perspectives on clinical applications.
    Swinnen JV
    Verh K Acad Geneeskd Belg; 2001; 63(4):321-33. PubMed ID: 11603058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Androgens, lipogenesis and prostate cancer.
    Swinnen JV; Heemers H; van de Sande T; de Schrijver E; Brusselmans K; Heyns W; Verhoeven G
    J Steroid Biochem Mol Biol; 2004 Nov; 92(4):273-9. PubMed ID: 15663990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Androgens and increased lipogenesis in prostate cancer. Cell biologic and clinical perspectives].
    Verhoeven G
    Verh K Acad Geneeskd Belg; 2002; 64(3):189-95; discussion 195-6. PubMed ID: 12238242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid synthase expression defines distinct molecular signatures in prostate cancer.
    Rossi S; Graner E; Febbo P; Weinstein L; Bhattacharya N; Onody T; Bubley G; Balk S; Loda M
    Mol Cancer Res; 2003 Aug; 1(10):707-15. PubMed ID: 12939396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KLF5 enhances SREBP-1 action in androgen-dependent induction of fatty acid synthase in prostate cancer cells.
    Lee MY; Moon JS; Park SW; Koh YK; Ahn YH; Kim KS
    Biochem J; 2009 Jan; 417(1):313-22. PubMed ID: 18774944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1.
    Amler LC; Agus DB; LeDuc C; Sapinoso ML; Fox WD; Kern S; Lee D; Wang V; Leysens M; Higgins B; Martin J; Gerald W; Dracopoli N; Cordon-Cardo C; Scher HI; Hampton GM
    Cancer Res; 2000 Nov; 60(21):6134-41. PubMed ID: 11085537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles.
    Tamura K; Furihata M; Tsunoda T; Ashida S; Takata R; Obara W; Yoshioka H; Daigo Y; Nasu Y; Kumon H; Konaka H; Namiki M; Tozawa K; Kohri K; Tanji N; Yokoyama M; Shimazui T; Akaza H; Mizutani Y; Miki T; Fujioka T; Shuin T; Nakamura Y; Nakagawa H
    Cancer Res; 2007 Jun; 67(11):5117-25. PubMed ID: 17545589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneity of molecular targets on clonal cancer lines derived from a novel hormone-refractory prostate cancer tumor system.
    Freedland SJ; Pantuck AJ; Paik SH; Zisman A; Graeber TG; Eisenberg D; McBride WH; Nguyen D; Tso CL; Belldegrun AS
    Prostate; 2003 Jun; 55(4):299-307. PubMed ID: 12712409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of naturally occurring and synthetic organoselenium compounds on protein profiling in androgen responsive and androgen independent human prostate cancer cells.
    Sinha R; Pinto JT; Facompre N; Kilheffer J; Baatz JE; El-Bayoumy K
    Nutr Cancer; 2008; 60(2):267-75. PubMed ID: 18444160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer.
    Locke JA; Guns ES; Lubik AA; Adomat HH; Hendy SC; Wood CA; Ettinger SL; Gleave ME; Nelson CC
    Cancer Res; 2008 Aug; 68(15):6407-15. PubMed ID: 18676866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in cholesterol regulation contribute to the production of intratumoral androgens during progression to castration-resistant prostate cancer in a mouse xenograft model.
    Leon CG; Locke JA; Adomat HH; Etinger SL; Twiddy AL; Neumann RD; Nelson CC; Guns ES; Wasan KM
    Prostate; 2010 Mar; 70(4):390-400. PubMed ID: 19866465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adrenomedullin, an autocrine/paracrine factor induced by androgen withdrawal, stimulates 'neuroendocrine phenotype' in LNCaP prostate tumor cells.
    Berenguer C; Boudouresque F; Dussert C; Daniel L; Muracciole X; Grino M; Rossi D; Mabrouk K; Figarella-Branger D; Martin PM; Ouafik L
    Oncogene; 2008 Jan; 27(4):506-18. PubMed ID: 17637748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid precursor protein is a primary androgen target gene that promotes prostate cancer growth.
    Takayama K; Tsutsumi S; Suzuki T; Horie-Inoue K; Ikeda K; Kaneshiro K; Fujimura T; Kumagai J; Urano T; Sakaki Y; Shirahige K; Sasano H; Takahashi S; Kitamura T; Ouchi Y; Aburatani H; Inoue S
    Cancer Res; 2009 Jan; 69(1):137-42. PubMed ID: 19117996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reg IV: a promising marker of hormone refractory metastatic prostate cancer.
    Gu Z; Rubin MA; Yang Y; Deprimo SE; Zhao H; Horvath S; Brooks JD; Loda M; Reiter RE
    Clin Cancer Res; 2005 Mar; 11(6):2237-43. PubMed ID: 15788672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PCOTH, a novel gene overexpressed in prostate cancers, promotes prostate cancer cell growth through phosphorylation of oncoprotein TAF-Ibeta/SET.
    Anazawa Y; Nakagawa H; Furihara M; Ashida S; Tamura K; Yoshioka H; Shuin T; Fujioka T; Katagiri T; Nakamura Y
    Cancer Res; 2005 Jun; 65(11):4578-86. PubMed ID: 15930275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of androgen-induced increase in lipid accumulation in prostate cancer cells.
    Sikkeland J; Lindstad T; Saatcioglu F
    Methods Mol Biol; 2011; 776():371-82. PubMed ID: 21796538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events.
    Sirotnak FM; She Y; Khokhar NZ; Hayes P; Gerald W; Scher HI
    Mol Carcinog; 2004 Nov; 41(3):150-63. PubMed ID: 15390081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prostate short-chain dehydrogenase reductase 1 (PSDR1): a new member of the short-chain steroid dehydrogenase/reductase family highly expressed in normal and neoplastic prostate epithelium.
    Lin B; White JT; Ferguson C; Wang S; Vessella R; Bumgarner R; True LD; Hood L; Nelson PS
    Cancer Res; 2001 Feb; 61(4):1611-8. PubMed ID: 11245473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.