These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19826610)

  • 1. Interplay between Topology and Dynamics in Excitation Patterns on Hierarchical Graphs.
    Hütt MT; Lesne A
    Front Neuroinform; 2009; 3():28. PubMed ID: 19826610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Framework based on communicability and flow to analyze complex network dynamics.
    Gilson M; Kouvaris NE; Deco G; Zamora-López G
    Phys Rev E; 2018 May; 97(5-1):052301. PubMed ID: 29906867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization patterns: from network motifs to hierarchical networks.
    Krishnagopal S; Lehnert J; Poel W; Zakharova A; Schöll E
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2088):. PubMed ID: 28115613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Less is more: wiring-economical modular networks support self-sustained firing-economical neural avalanches for efficient processing.
    Liang J; Wang SJ; Zhou C
    Natl Sci Rev; 2022 Mar; 9(3):nwab102. PubMed ID: 35355506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topology regulates the distribution pattern of excitations in excitable dynamics on graphs.
    Müller-Linow M; Marr C; Hütt MT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016112. PubMed ID: 16907156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization reveals topological scales in complex networks.
    Arenas A; Díaz-Guilera A; Pérez-Vicente CJ
    Phys Rev Lett; 2006 Mar; 96(11):114102. PubMed ID: 16605825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations.
    Wang SJ; Hilgetag CC; Zhou C
    Front Comput Neurosci; 2011; 5():30. PubMed ID: 21852971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Link-usage asymmetry and collective patterns emerging from rich-club organization of complex networks.
    Moretti P; Hütt MT
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18332-18340. PubMed ID: 32690716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical properties of avalanches in networks.
    Larremore DB; Carpenter MY; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066131. PubMed ID: 23005186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical compound topology uncovers complex structure of species interaction networks.
    Pinheiro RBP; Felix GMF; Lewinsohn TM
    J Anim Ecol; 2022 Nov; 91(11):2248-2260. PubMed ID: 36054553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of oscillator dynamics on complex networks to dynamics on complete graphs through virtual frequencies.
    Gao J; Efstathiou K
    Phys Rev E; 2020 Feb; 101(2-1):022302. PubMed ID: 32168684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frustrated hierarchical synchronization and emergent complexity in the human connectome network.
    Villegas P; Moretti P; Muñoz MA
    Sci Rep; 2014 Aug; 4():5990. PubMed ID: 25103684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building blocks of self-sustained activity in a simple deterministic model of excitable neural networks.
    Garcia GC; Lesne A; Hütt MT; Hilgetag CC
    Front Comput Neurosci; 2012; 6():50. PubMed ID: 22888317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs.
    Fretter C; Lesne A; Hilgetag CC; Hütt MT
    Sci Rep; 2017 Feb; 7():42340. PubMed ID: 28186182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular co-organization of functional connectivity and scale-free dynamics in the human brain.
    Zhigalov A; Arnulfo G; Nobili L; Palva S; Palva JM
    Netw Neurosci; 2017; 1(2):143-165. PubMed ID: 29911674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of overlapping structures in modular networks.
    Almendral JA; Leyva I; Li D; Sendiña-Nadal I; Havlin S; Boccaletti S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016115. PubMed ID: 20866697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel Algorithms for Switching Edges in Heterogeneous Graphs.
    Bhuiyan H; Khan M; Chen J; Marathe M
    J Parallel Distrib Comput; 2017 Jun; 104():19-35. PubMed ID: 28757680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collective dynamics of neuronal activities in various modular networks.
    Park MU; Bae Y; Lee KS; Song JH; Lee SM; Yoo KH
    Lab Chip; 2021 Mar; 21(5):951-961. PubMed ID: 33475100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular and hierarchically modular organization of brain networks.
    Meunier D; Lambiotte R; Bullmore ET
    Front Neurosci; 2010; 4():200. PubMed ID: 21151783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical organization unveiled by functional connectivity in complex brain networks.
    Zhou C; Zemanová L; Zamora G; Hilgetag CC; Kurths J
    Phys Rev Lett; 2006 Dec; 97(23):238103. PubMed ID: 17280251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.