These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19826654)

  • 1. Droplet-based compartmentalization of chemically separated components in two-dimensional separations.
    Niu XZ; Zhang B; Marszalek RT; Ces O; Edel JB; Klug DR; deMello AJ
    Chem Commun (Camb); 2009 Nov; (41):6159-61. PubMed ID: 19826654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive two-dimensional separations based on capillary high-performance liquid chromatography and microchip electrophoresis.
    Yang X; Zhang X; Li A; Zhu S; Huang Y
    Electrophoresis; 2003 May; 24(9):1451-7. PubMed ID: 12731033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lab-chip HPLC with integrated droplet-based microfluidics for separation and high frequency compartmentalisation.
    Kim JY; Cho SW; Kang DK; Edel JB; Chang SI; deMello AJ; O'Hare D
    Chem Commun (Camb); 2012 Sep; 48(73):9144-6. PubMed ID: 22871959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Development of a droplet-interfaced high performance liquid chromatography-capillary electrophoresis two dimensional separation platform].
    Ye L; Wu Q; Dai S; Xiao Z; Zhang B
    Se Pu; 2011 Sep; 29(9):857-61. PubMed ID: 22233072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry.
    Ji J; Nie L; Qiao L; Li Y; Guo L; Liu B; Yang P; Girault HH
    Lab Chip; 2012 Aug; 12(15):2625-9. PubMed ID: 22695710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallelized edge-based droplet generation (EDGE) devices.
    van Dijke K; Veldhuis G; Schroën K; Boom R
    Lab Chip; 2009 Oct; 9(19):2824-30. PubMed ID: 19967120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrowetting-on-dielectric actuation of droplets with capillary electrophoretic zones for off-line mass spectrometric analysis.
    Gorbatsova J; Borissova M; Kaljurand M
    J Chromatogr A; 2012 Apr; 1234():9-15. PubMed ID: 22226458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic droplet generator based on a piezoelectric actuator.
    Bransky A; Korin N; Khoury M; Levenberg S
    Lab Chip; 2009 Feb; 9(4):516-20. PubMed ID: 19190786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compartmentalization of chemically separated components into droplets.
    Edgar JS; Milne G; Zhao Y; Pabbati CP; Lim DS; Chiu DT
    Angew Chem Int Ed Engl; 2009; 48(15):2719-22. PubMed ID: 19142923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stroboscopic sampling in comprehensive high-performance liquid chromatography-capillary electrophoresis via a pneumatic sampler.
    Ehala S; Kaljurand M; Kudrjashova M; Vaher M
    Electrophoresis; 2004 Apr; 25(7-8):980-9. PubMed ID: 15095438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme.
    Mazutis L; Baret JC; Treacy P; Skhiri Y; Araghi AF; Ryckelynck M; Taly V; Griffiths AD
    Lab Chip; 2009 Oct; 9(20):2902-8. PubMed ID: 19789742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two dimensional separations of human urinary protein digest using a droplet-interfaced platform.
    Ye L; Wang X; Han J; Gao F; Xu L; Xiao Z; Bai P; Wang Q; Zhang B
    Anal Chim Acta; 2015 Mar; 863():86-94. PubMed ID: 25732316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pillar-induced droplet merging in microfluidic circuits.
    Niu X; Gulati S; Edel JB; deMello AJ
    Lab Chip; 2008 Nov; 8(11):1837-41. PubMed ID: 18941682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Column coupling isotachophoresis-capillary electrophoresis with mass spectrometric detection: characterization and optimization of microfluidic interfaces.
    Kler PA; Posch TN; Pattky M; Tiggelaar RM; Huhn C
    J Chromatogr A; 2013 Jul; 1297():204-12. PubMed ID: 23706548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macro-to-micro interfaces for microfluidic devices.
    Fredrickson CK; Fan ZH
    Lab Chip; 2004 Dec; 4(6):526-33. PubMed ID: 15570361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High performance microfluidic capillary electrophoresis devices.
    Fu LM; Leong JC; Lin CF; Tai CH; Tsai CH
    Biomed Microdevices; 2007 Jun; 9(3):405-12. PubMed ID: 17487587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring the purity of a synthetic peptide by capillary electrophoresis: utilization of an on-line preconcentration method for improved separation and detection sensitivity.
    Vizioli NM; Carducci CN; Peña C; Guzman NA
    J Capill Electrophor Microchip Technol; 1999; 6(3-4):109-18. PubMed ID: 11315150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.