These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19826665)

  • 1. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures.
    Rico VJ; Hueso JL; Cotrino J; Gallardo V; Sarmiento B; Brey JJ; González-Elipe AR
    Chem Commun (Camb); 2009 Nov; (41):6192-4. PubMed ID: 19826665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of different dielectric barrier discharge plasma configurations as an alternative technology for green C1 chemistry in the carbon dioxide reforming of methane and the direct decomposition of methanol.
    Rico VJ; Hueso JL; Cotrino J; González-Elipe AR
    J Phys Chem A; 2010 Mar; 114(11):4009-16. PubMed ID: 20184329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.
    Kim T; Hwang JS; Kwon S
    Lab Chip; 2007 Jul; 7(7):835-41. PubMed ID: 17594001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen production by sorption-enhanced steam reforming of glycerol.
    Dou B; Dupont V; Rickett G; Blakeman N; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2009 Jul; 100(14):3540-7. PubMed ID: 19318245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steam reforming of crude glycerol with in situ CO(2) sorption.
    Dou B; Rickett GL; Dupont V; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2010 Apr; 101(7):2436-42. PubMed ID: 19945865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse CeO2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream.
    Hornés A; Hungría AB; Bera P; López Cámara A; Fernández-García M; Martínez-Arias A; Barrio L; Estrella M; Zhou G; Fonseca JJ; Hanson JC; Rodriguez JA
    J Am Chem Soc; 2010 Jan; 132(1):34-5. PubMed ID: 20014841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic oxidation of benzene using DBD corona discharges.
    Lu B; Zhang X; Yu X; Feng T; Yao S
    J Hazard Mater; 2006 Sep; 137(1):633-7. PubMed ID: 16621276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis.
    Olah GA; Goeppert A; Czaun M; Prakash GK
    J Am Chem Soc; 2013 Jan; 135(2):648-50. PubMed ID: 23256664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides.
    Hereijgers BP; Weckhuysen BM
    ChemSusChem; 2009; 2(8):743-8. PubMed ID: 19588474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises.
    He L; Chen D
    ChemSusChem; 2012 Mar; 5(3):587-95. PubMed ID: 22378630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma-catalyst hybrid reactor with CeO
    Mao L; Chen Z; Wu X; Tang X; Yao S; Zhang X; Jiang B; Han J; Wu Z; Lu H; Nozaki T
    J Hazard Mater; 2018 Apr; 347():150-159. PubMed ID: 29306216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restructuring and redispersion of silver on SiO2 under oxidizing/reducing atmospheres and its activity toward CO oxidation.
    Qu Z; Huang W; Cheng M; Bao X
    J Phys Chem B; 2005 Aug; 109(33):15842-8. PubMed ID: 16853013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.
    Cortright RD; Davda RR; Dumesic JA
    Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalyst screening for oxidative reforming of methane in direct route using high pressure HTS reactor with syngas detection system by colorimetric reaction and gas chromatograph.
    Omata K; Ishii H; Horiguchi J; Kobayashi S; Yamazaki Y; Yamada M
    J Comb Chem; 2009; 11(1):169-74. PubMed ID: 19133839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hydrogen generated by dielectric barrier discharge of NH3 on selective non-catalytic reduction process.
    Byun Y; Ko KB; Cho M; Namkung W; Shin DN; Koh DJ
    Chemosphere; 2009 May; 75(6):815-8. PubMed ID: 19230950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steam reforming of methanol over oxide decorated nanoporous gold catalysts: a combined in situ FTIR and flow reactor study.
    Shi J; Mahr C; Murshed MM; Gesing TM; Rosenauer A; Bäumer M; Wittstock A
    Phys Chem Chem Phys; 2017 Mar; 19(13):8880-8888. PubMed ID: 28294235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen.
    Alayoglu S; Nilekar AU; Mavrikakis M; Eichhorn B
    Nat Mater; 2008 Apr; 7(4):333-8. PubMed ID: 18345004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming.
    Zhong Z; Ang H; Choong C; Chen L; Huang L; Lin J
    Phys Chem Chem Phys; 2009 Feb; 11(5):872-80. PubMed ID: 19290335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decomposition kinetics of ammonia in gaseous stream by a nanoscale copper-cerium bimetallic catalyst.
    Hung CM
    J Hazard Mater; 2008 Jan; 150(1):53-61. PubMed ID: 17517471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of hydrogen production of methanol reformation using Cu/ZnO/Al2O3 catalyst.
    Wu HS; Chung SC
    J Comb Chem; 2007; 9(6):990-7. PubMed ID: 17900166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.