BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19826672)

  • 1. Mixed-valence interactions in triarylamine-gold-nanoparticle conjugates.
    Müller CI; Lambert C; Steeger M; Forster F; Wiessner M; Schöll A; Reinert F; Kamp M
    Chem Commun (Camb); 2009 Nov; (41):6213-5. PubMed ID: 19826672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some more observations on the unique electrochemical properties of electrode-monolayer-nanoparticle constructs.
    Dyne J; Lin YS; Lai LM; Ginges JZ; Luais E; Peterson JR; Goon IY; Amal R; Gooding JJ
    Chemphyschem; 2010 Sep; 11(13):2807-13. PubMed ID: 20669213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticles: past, present, and future.
    Sardar R; Funston AM; Mulvaney P; Murray RW
    Langmuir; 2009 Dec; 25(24):13840-51. PubMed ID: 19572538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monofunctional gold nanoparticles prepared via a noncovalent-interaction-based solid-phase modification approach.
    Liu X; Worden JG; Dai Q; Zou J; Wang J; Huo Q
    Small; 2006 Oct; 2(10):1126-9. PubMed ID: 17193575
    [No Abstract]   [Full Text] [Related]  

  • 5. Gold nanoparticle ensembles allow mechanistic insights into electrochemical processes.
    Khairy M; Choudry NA; Ouasti M; Kampouris DK; Kadara RO; Banks CE
    Chemphyschem; 2010 Mar; 11(4):875-9. PubMed ID: 20169603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed-valence nanoclusters: fast electron transfer in mixed-valence systems with a gold nanoparticle as the bridge.
    Canzi G; Kubiak CP
    Small; 2011 Jul; 7(14):1967-71. PubMed ID: 21656906
    [No Abstract]   [Full Text] [Related]  

  • 7. Electrochemical and optical characterization of triarylamine functionalized gold nanoparticles.
    Müller CI; Lambert C
    Langmuir; 2011 Apr; 27(8):5029-39. PubMed ID: 21417368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile electrocatalytic redox of hemoglobin by flower-like gold nanoparticles on boron-doped diamond surface.
    Li M; Zhao G; Geng R; Hu H
    Bioelectrochemistry; 2008 Nov; 74(1):217-21. PubMed ID: 18805070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical fabrication of nanostructured surfaces for enhanced response.
    Refera Soreta T; Strutwolf J; O'Sullivan CK
    Chemphyschem; 2008 Apr; 9(6):920-7. PubMed ID: 18366055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of gold nanoparticles using amine reducing agents.
    Newman JD; Blanchard GJ
    Langmuir; 2006 Jun; 22(13):5882-7. PubMed ID: 16768524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle films as electrodes: voltammetric sensitivity to the nanoparticle energy gap.
    Ranganathan S; Guo R; Murray RW
    Langmuir; 2007 Jun; 23(13):7372-7. PubMed ID: 17508765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulation of the assembly of gold nanoparticles on DNA fragments via electrostatic interaction.
    Komarov PV; Zherenkova LV; Khalatur PG
    J Chem Phys; 2008 Mar; 128(12):124909. PubMed ID: 18376975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced electron transfer between chlorophyll a and gold nanoparticles.
    Barazzouk S; Kamat PV; Hotchandani S
    J Phys Chem B; 2005 Jan; 109(2):716-23. PubMed ID: 16866432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model systems for flavoenzyme activity: recognition and redox modulation of flavin mononucleotide in water using nanoparticles.
    Bayir A; Jordan BJ; Verma A; Pollier MA; Cooke G; Rotello VM
    Chem Commun (Camb); 2006 Oct; (38):4033-5. PubMed ID: 17003890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductivity in alkylamine/gold and alkanethiol/gold molecular junctions measured in molecule/nanoparticle/molecule bridges and conducting probe structures.
    Chu C; Na JS; Parsons GN
    J Am Chem Soc; 2007 Feb; 129(8):2287-96. PubMed ID: 17279744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The erratic emission of pyrene on gold nanoparticles.
    Battistini G; Cozzi PG; Jalkanen JP; Montalti M; Prodi L; Zaccheroni N; Zerbetto F
    ACS Nano; 2008 Jan; 2(1):77-84. PubMed ID: 19206550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticle-cytochrome C complexes: the effect of nanoparticle ligand charge on protein structure.
    Aubin-Tam ME; Hamad-Schifferli K
    Langmuir; 2005 Dec; 21(26):12080-4. PubMed ID: 16342975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and electrochemical applications of gold nanoparticles.
    Guo S; Wang E
    Anal Chim Acta; 2007 Aug; 598(2):181-92. PubMed ID: 17719891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical characterization of polyelectrolyte/gold nanoparticle multilayers self-assembled on gold electrodes.
    Chirea M; García-Morales V; Manzanares JA; Pereira C; Gulaboski R; Silva F
    J Phys Chem B; 2005 Nov; 109(46):21808-17. PubMed ID: 16853832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold-silver and silver-silver nanoparticle constructs based on DNA hybridization of thiol- and amino-functionalized oligonucleotides.
    Steinbrück A; Csaki A; Ritter K; Leich M; Köhler JM; Fritzsche W
    J Biophotonics; 2008 May; 1(2):104-13. PubMed ID: 19343642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.