These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19826672)

  • 1. Mixed-valence interactions in triarylamine-gold-nanoparticle conjugates.
    Müller CI; Lambert C; Steeger M; Forster F; Wiessner M; Schöll A; Reinert F; Kamp M
    Chem Commun (Camb); 2009 Nov; (41):6213-5. PubMed ID: 19826672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some more observations on the unique electrochemical properties of electrode-monolayer-nanoparticle constructs.
    Dyne J; Lin YS; Lai LM; Ginges JZ; Luais E; Peterson JR; Goon IY; Amal R; Gooding JJ
    Chemphyschem; 2010 Sep; 11(13):2807-13. PubMed ID: 20669213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticles: past, present, and future.
    Sardar R; Funston AM; Mulvaney P; Murray RW
    Langmuir; 2009 Dec; 25(24):13840-51. PubMed ID: 19572538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monofunctional gold nanoparticles prepared via a noncovalent-interaction-based solid-phase modification approach.
    Liu X; Worden JG; Dai Q; Zou J; Wang J; Huo Q
    Small; 2006 Oct; 2(10):1126-9. PubMed ID: 17193575
    [No Abstract]   [Full Text] [Related]  

  • 5. Gold nanoparticle ensembles allow mechanistic insights into electrochemical processes.
    Khairy M; Choudry NA; Ouasti M; Kampouris DK; Kadara RO; Banks CE
    Chemphyschem; 2010 Mar; 11(4):875-9. PubMed ID: 20169603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed-valence nanoclusters: fast electron transfer in mixed-valence systems with a gold nanoparticle as the bridge.
    Canzi G; Kubiak CP
    Small; 2011 Jul; 7(14):1967-71. PubMed ID: 21656906
    [No Abstract]   [Full Text] [Related]  

  • 7. Electrochemical and optical characterization of triarylamine functionalized gold nanoparticles.
    Müller CI; Lambert C
    Langmuir; 2011 Apr; 27(8):5029-39. PubMed ID: 21417368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile electrocatalytic redox of hemoglobin by flower-like gold nanoparticles on boron-doped diamond surface.
    Li M; Zhao G; Geng R; Hu H
    Bioelectrochemistry; 2008 Nov; 74(1):217-21. PubMed ID: 18805070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical fabrication of nanostructured surfaces for enhanced response.
    Refera Soreta T; Strutwolf J; O'Sullivan CK
    Chemphyschem; 2008 Apr; 9(6):920-7. PubMed ID: 18366055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of gold nanoparticles using amine reducing agents.
    Newman JD; Blanchard GJ
    Langmuir; 2006 Jun; 22(13):5882-7. PubMed ID: 16768524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle films as electrodes: voltammetric sensitivity to the nanoparticle energy gap.
    Ranganathan S; Guo R; Murray RW
    Langmuir; 2007 Jun; 23(13):7372-7. PubMed ID: 17508765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulation of the assembly of gold nanoparticles on DNA fragments via electrostatic interaction.
    Komarov PV; Zherenkova LV; Khalatur PG
    J Chem Phys; 2008 Mar; 128(12):124909. PubMed ID: 18376975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced electron transfer between chlorophyll a and gold nanoparticles.
    Barazzouk S; Kamat PV; Hotchandani S
    J Phys Chem B; 2005 Jan; 109(2):716-23. PubMed ID: 16866432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model systems for flavoenzyme activity: recognition and redox modulation of flavin mononucleotide in water using nanoparticles.
    Bayir A; Jordan BJ; Verma A; Pollier MA; Cooke G; Rotello VM
    Chem Commun (Camb); 2006 Oct; (38):4033-5. PubMed ID: 17003890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductivity in alkylamine/gold and alkanethiol/gold molecular junctions measured in molecule/nanoparticle/molecule bridges and conducting probe structures.
    Chu C; Na JS; Parsons GN
    J Am Chem Soc; 2007 Feb; 129(8):2287-96. PubMed ID: 17279744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The erratic emission of pyrene on gold nanoparticles.
    Battistini G; Cozzi PG; Jalkanen JP; Montalti M; Prodi L; Zaccheroni N; Zerbetto F
    ACS Nano; 2008 Jan; 2(1):77-84. PubMed ID: 19206550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticle-cytochrome C complexes: the effect of nanoparticle ligand charge on protein structure.
    Aubin-Tam ME; Hamad-Schifferli K
    Langmuir; 2005 Dec; 21(26):12080-4. PubMed ID: 16342975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and electrochemical applications of gold nanoparticles.
    Guo S; Wang E
    Anal Chim Acta; 2007 Aug; 598(2):181-92. PubMed ID: 17719891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical characterization of polyelectrolyte/gold nanoparticle multilayers self-assembled on gold electrodes.
    Chirea M; García-Morales V; Manzanares JA; Pereira C; Gulaboski R; Silva F
    J Phys Chem B; 2005 Nov; 109(46):21808-17. PubMed ID: 16853832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold-silver and silver-silver nanoparticle constructs based on DNA hybridization of thiol- and amino-functionalized oligonucleotides.
    Steinbrück A; Csaki A; Ritter K; Leich M; Köhler JM; Fritzsche W
    J Biophotonics; 2008 May; 1(2):104-13. PubMed ID: 19343642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.