These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 19826688)

  • 1. How intimate contact with nanoporous carbon benefits the reversible hydrogen desorption from NaH and NaAlH4.
    Adelhelm P; de Jong KP; de Jongh PE
    Chem Commun (Camb); 2009 Nov; (41):6261-3. PubMed ID: 19826688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kinetic enhancement of hydrogen cycling in NaAlH(4) by melt infusion into nanoporous carbon aerogel.
    Stephens RD; Gross AF; Van Atta SL; Vajo JJ; Pinkerton FE
    Nanotechnology; 2009 May; 20(20):204018. PubMed ID: 19420666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural characterization and H(2) sorption properties of carbon-supported Mg(1-x)Nix nanocrystallites.
    Bogerd R; Adelhelm P; Meeldijk JH; de Jong KP; de Jongh PE
    Nanotechnology; 2009 May; 20(20):204019. PubMed ID: 19420667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoconfined NaAlH4: prolific effects from increased surface area and pore volume.
    Nielsen TK; Javadian P; Polanski M; Besenbacher F; Bystrzycki J; Skibsted J; Jensen TR
    Nanoscale; 2014 Jan; 6(1):599-607. PubMed ID: 24247423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced hydrogen storage kinetics and air stability of nanoconfined NaAlH
    Do HW; Kim H; Cho ES
    RSC Adv; 2021 Oct; 11(52):32533-32540. PubMed ID: 35493568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversibility of the hydrogen desorption from LiBH4: a synergetic effect of nanoconfinement and Ni addition.
    Ngene P; van Zwienen MR; de Jongh PE
    Chem Commun (Camb); 2010 Nov; 46(43):8201-3. PubMed ID: 20871935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel FTIR-ATR spectroscopy and gravimetry for the in situ hydrogen desorption measurement of NaAlH
    Enders M; Kleber M; Derscheid G; Hofmann K; Bauer HD; Scheppat B
    Appl Opt; 2020 Oct; 59(30):9510-9519. PubMed ID: 33104671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the sorption dynamics of NaH using a reactive force field.
    Ojwang JG; van Santen R; Kramer GJ; van Duin AC; Goddard WA
    J Chem Phys; 2008 Apr; 128(16):164714. PubMed ID: 18447486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks.
    Zhao X; Xiao B; Fletcher AJ; Thomas KM; Bradshaw D; Rosseinsky MJ
    Science; 2004 Nov; 306(5698):1012-5. PubMed ID: 15486255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A precursor state for formation of TiAl3 complex in reversible hydrogen desorption/adsorption from Ti-doped NaAlH4.
    Liu J; Ge Q
    Chem Commun (Camb); 2006 May; (17):1822-4. PubMed ID: 16622495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dehydrogenation Properties and Catalytic Mechanism of the K
    Mustafa NS; Yahya MS; Sazelee N; Ali NA; Ismail M
    ACS Omega; 2018 Dec; 3(12):17100-17107. PubMed ID: 31458330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A first-principles analysis of hydrogen interaction in Ti-doped NaAlH4 surfaces: structure and energetics.
    Liu J; Ge Q
    J Phys Chem B; 2006 Dec; 110(51):25863-8. PubMed ID: 17181233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials.
    Zhao X; Villar-Rodil S; Fletcher AJ; Thomas KM
    J Phys Chem B; 2006 May; 110(20):9947-55. PubMed ID: 16706452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory.
    Vegge T
    Phys Chem Chem Phys; 2006 Nov; 8(42):4853-61. PubMed ID: 17066174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4.
    Wang P; Kang XD; Cheng HM
    J Phys Chem B; 2005 Nov; 109(43):20131-6. PubMed ID: 16853602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion desorption efficiency and internal energy transfer in carbon-based surface-assisted laser desorption/ionization mass spectrometry: desorption mechanism(s) and the design of SALDI substrates.
    Tang HW; Ng KM; Lu W; Che CM
    Anal Chem; 2009 Jun; 81(12):4720-9. PubMed ID: 19449861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indirect, reversible high-density hydrogen storage in compact metal ammine salts.
    Sørensen RZ; Hummelshøj JS; Klerke A; Reves JB; Vegge T; Nørskov JK; Christensen CH
    J Am Chem Soc; 2008 Jul; 130(27):8660-8. PubMed ID: 18549216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials.
    Thomas KM
    Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen adsorption on functionalized nanoporous activated carbons.
    Zhao XB; Xiao B; Fletcher AJ; Thomas KM
    J Phys Chem B; 2005 May; 109(18):8880-8. PubMed ID: 16852056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles study of Ti-catalyzed hydrogen chemisorption on an Al surface: a critical first step for reversible hydrogen storage in NaAlH4.
    Chaudhuri S; Muckerman JT
    J Phys Chem B; 2005 Apr; 109(15):6952-7. PubMed ID: 16851788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.