These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19826864)

  • 1. Production of phenols and alkyl gallate esters by Rhodobacter sphaeroides OU5.
    Kumavath RN; Ramana ChV; Sasikala Ch
    Curr Microbiol; 2010 Feb; 60(2):107-11. PubMed ID: 19826864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-dependent transformation of aniline to indole esters by the purple bacterium Rhodobacter sphaeroides OU5.
    Shanker V; Rayabandla SM; Kumavath RN; Chintalapati S; Chintalapati R
    Curr Microbiol; 2006 Jun; 52(6):413-7. PubMed ID: 16732448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catabolism of L-phenylalanine and L-tyrosine by Rhodobacter sphaeroides OU5 occurs through 3,4-dihydroxyphenylalanine.
    Ranjith NK; Sasikala Ch; Ramana ChV
    Res Microbiol; 2007; 158(6):506-11. PubMed ID: 17616348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fate of selenate and selenite metabolized by Rhodobacter sphaeroides.
    Van Fleet-Stalder V; Chasteen TG; Pickering IJ; George GN; Prince RC
    Appl Environ Microbiol; 2000 Nov; 66(11):4849-53. PubMed ID: 11055934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-dependent assimilation of trans-cinnamate by Rhodobacter sphaeroides OU5.
    Usha P; Sasikala Ch; Ramana ChV
    Curr Microbiol; 2007 Jun; 54(6):410-3. PubMed ID: 17503150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of a novel indole ester from 2-aminobenzoate by Rhodobacter sphaeroides OU5.
    Sunayana MR; Sasikala Ch; Ramana ChV
    J Ind Microbiol Biotechnol; 2005 Feb; 32(2):41-5. PubMed ID: 15726442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phototrophic utilization of taurine by the purple nonsulfur bacteria Rhodopseudomonas palustris and Rhodobacter sphaeroides.
    Novak RT; Gritzer RF; Leadbetter ER; Godchaux W
    Microbiology (Reading); 2004 Jun; 150(Pt 6):1881-1891. PubMed ID: 15184574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoproduction of L-tryptophan from indole and glycine by Rhodobacter sphaeroides OU5.
    Rajasekhar N; Sasikala C; Ramana CV
    Biotechnol Appl Biochem; 1999 Dec; 30(3):209-12. PubMed ID: 10574689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodestrin: a novel indole terpenoid phytohormone from Rhodobacter sphaeroides.
    Sunayana MR; Sasikala Ch; Ramana ChV
    Biotechnol Lett; 2005 Dec; 27(23-24):1897-900. PubMed ID: 16328987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodethrin: a novel indole terpenoid ether produced by Rhodobacter sphaeroides has cytotoxic and phytohormonal activities.
    Ranjith NK; Sasikala Ch; Ramana ChV
    Biotechnol Lett; 2007 Sep; 29(9):1399-402. PubMed ID: 17636389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stringency in the absence of ppGpp accumulation in Rhodobacter sphaeroides.
    Acosta R; Lueking DR
    J Bacteriol; 1987 Feb; 169(2):908-12. PubMed ID: 3492491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-enabled analysis of the utilization of taurine as sole source of carbon or of nitrogen by Rhodobacter sphaeroides 2.4.1.
    Denger K; Smits THM; Cook AM
    Microbiology (Reading); 2006 Nov; 152(Pt 11):3197-3206. PubMed ID: 17074891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Light Regulation on Proteome Expression in Rhodobacter sphaeroides 2.4.1.
    Park JM; Lee HJ; Ahn J; Sekhon SS; Kim SY; Wee JH; Min J; Ahn JY; Kim YH
    Mol Biotechnol; 2021 May; 63(5):437-445. PubMed ID: 33666852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of 3,4-dihydroxyphenylalanine oxidative deaminase from Rhodobacter sphaeroides OU5.
    Ranjith NK; Ramana ChV; Sasikala Ch
    Can J Microbiol; 2008 Oct; 54(10):829-34. PubMed ID: 18923551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of intracellular 5-aminolevulinic acid by a newly identified halotolerant Rhodobacter sphaeroides.
    Tangprasittipap A; Prasertsan P; Choorit W; Sasaki K
    Biotechnol Lett; 2007 May; 29(5):773-8. PubMed ID: 17245554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction of Glyoxylate Bypass Increases Hydrogen Gas Yield from Acetate and l-Glutamate in
    Shimizu T; Teramoto H; Inui M
    Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30413472
    [No Abstract]   [Full Text] [Related]  

  • 17. The effect of aeration, agitation and light on biohydrogen production by Rhodobacter sphaeroides NCIMB 8253.
    Jaapar SZ; Kalil MS; Anuar N
    Pak J Biol Sci; 2009 Sep; 12(18):1253-9. PubMed ID: 20384278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The periplasmic component of the DctPQM TRAP-transporter is part of the DctS/DctR sensory pathway in
    Sánchez-Ortiz VJ; Domenzain C; Poggio S; Dreyfus G; Camarena L
    Microbiology (Reading); 2021 Mar; 167(3):. PubMed ID: 33620307
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibited growth of Clostridium butyricum in efficient H
    Laurinavichene T; Laurinavichius K; Shastik E; Tsygankov A
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10649-10658. PubMed ID: 27838838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake.
    Arumugam A; Sandhya M; Ponnusami V
    Bioresour Technol; 2014 Jul; 164():170-6. PubMed ID: 24859207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.