These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19826891)

  • 1. GlyT2+ neurons in the lateral cerebellar nucleus.
    Uusisaari M; Knöpfel T
    Cerebellum; 2010 Mar; 9(1):42-55. PubMed ID: 19826891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei.
    Uusisaari M; Obata K; Knöpfel T
    J Neurophysiol; 2007 Jan; 97(1):901-11. PubMed ID: 17093116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional classification of neurons in the mouse lateral cerebellar nuclei.
    Uusisaari M; Knöpfel T
    Cerebellum; 2011 Dec; 10(4):637-46. PubMed ID: 21116763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei.
    Uusisaari M; Knöpfel T
    Neuroscience; 2008 Oct; 156(3):537-49. PubMed ID: 18755250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice.
    Zeilhofer HU; Studler B; Arabadzisz D; Schweizer C; Ahmadi S; Layh B; Bösl MR; Fritschy JM
    J Comp Neurol; 2005 Feb; 482(2):123-41. PubMed ID: 15611994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The glycine transporter GlyT2 controls the dynamics of synaptic vesicle refilling in inhibitory spinal cord neurons.
    Rousseau F; Aubrey KR; Supplisson S
    J Neurosci; 2008 Sep; 28(39):9755-68. PubMed ID: 18815261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of glycinergic neurons in the brain of glycine transporter-2 transgenic Tg(glyt2:Gfp) adult zebrafish: relationship to brain-spinal descending systems.
    Barreiro-Iglesias A; Mysiak KS; Adrio F; Rodicio MC; Becker CG; Becker T; Anadón R
    J Comp Neurol; 2013 Feb; 521(2):389-425. PubMed ID: 22736487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABAergic synaptogenesis marks the onset of differentiation of basket and stellate cells in mouse cerebellum.
    Simat M; Ambrosetti L; Lardi-Studler B; Fritschy JM
    Eur J Neurosci; 2007 Oct; 26(8):2239-56. PubMed ID: 17892480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential GABAergic and glycinergic inputs of inhibitory interneurons and Purkinje cells to principal cells of the cerebellar nuclei.
    Husson Z; Rousseau CV; Broll I; Zeilhofer HU; Dieudonné S
    J Neurosci; 2014 Jul; 34(28):9418-31. PubMed ID: 25009273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendritic morphology, local circuitry, and intrinsic electrophysiology of neurons in the rat medial and lateral habenular nuclei of the epithalamus.
    Kim U; Chang SY
    J Comp Neurol; 2005 Mar; 483(2):236-50. PubMed ID: 15678472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycinergic projection neurons of the cerebellum.
    Bagnall MW; Zingg B; Sakatos A; Moghadam SH; Zeilhofer HU; du Lac S
    J Neurosci; 2009 Aug; 29(32):10104-10. PubMed ID: 19675244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early glycinergic axon contact with the Mauthner neuron during zebrafish development.
    Moly PK; Hatta K
    Neurosci Res; 2011 Jul; 70(3):251-9. PubMed ID: 21397641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex.
    Shinoda Y; Sugihara I; Wu HS; Sugiuchi Y
    Prog Brain Res; 2000; 124():173-86. PubMed ID: 10943124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological and morphological characteristics of nucleus tractus solitarii neurons projecting to the ventrolateral medulla.
    Kawai Y; Senba E
    Brain Res; 2000 Sep; 877(2):374-8. PubMed ID: 10986354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei.
    Ouardouz M; Sastry BR
    J Neurophysiol; 2000 Sep; 84(3):1414-21. PubMed ID: 10980014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic inputs to granule cells of the dorsal cochlear nucleus.
    Balakrishnan V; Trussell LO
    J Neurophysiol; 2008 Jan; 99(1):208-19. PubMed ID: 17959739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of initially appearing glycine-immunoreactive neurons in the embryonic zebrafish brain.
    Moly PK; Ikenaga T; Kamihagi C; Islam AF; Hatta K
    Dev Neurobiol; 2014 Jun; 74(6):616-32. PubMed ID: 24318965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebellar input to magnocellular neurons in the red nucleus of the mouse: synaptic analysis in horizontal brain slices incorporating cerebello-rubral pathways.
    Jiang MC; Alheid GF; Nunzi MG; Houk JC;
    Neuroscience; 2002; 110(1):105-21. PubMed ID: 11882376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum.
    Ibáñez-Sandoval O; Tecuapetla F; Unal B; Shah F; Koós T; Tepper JM
    J Neurosci; 2010 May; 30(20):6999-7016. PubMed ID: 20484642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological characteristics of inhibitory neurons of the prepositus hypoglossi nucleus as analyzed in Venus-expressing transgenic rats.
    Shino M; Kaneko R; Yanagawa Y; Kawaguchi Y; Saito Y
    Neuroscience; 2011 Dec; 197():89-98. PubMed ID: 21952130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.