These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 19827158)
1. The intramandibular joint in Girella: a mechanism for increased force production? Ferry-Graham LA; Konow N J Morphol; 2010 Mar; 271(3):271-9. PubMed ID: 19827158 [TBL] [Abstract][Full Text] [Related]
2. Prey-capture in Pomacanthus semicirculatus (Teleostei, Pomacanthidae): functional implications of intramandibular joints in marine angelfishes. Konow N; Bellwood DR J Exp Biol; 2005 Apr; 208(Pt 8):1421-33. PubMed ID: 15802666 [TBL] [Abstract][Full Text] [Related]
3. The Teleost Intramandibular Joint: A mechanism That Allows Fish to Obtain Prey Unavailable to Suction Feeders. Gibb AC; Staab K; Moran C; Ferry LA Integr Comp Biol; 2015 Jul; 55(1):85-96. PubMed ID: 26002346 [TBL] [Abstract][Full Text] [Related]
4. Bite force and feeding kinematics in the eastern North Pacific Kyphosidae. Moran CJ; Ferry L J Exp Zool A Ecol Genet Physiol; 2014 Apr; 321(4):189-97. PubMed ID: 24497484 [TBL] [Abstract][Full Text] [Related]
5. A novel intramandibular joint facilitates feeding versatility in the sixbar distichodus. Martinez CM; Tovar AJ; Wainwright PC J Exp Biol; 2022 Jan; 225(2):. PubMed ID: 34989395 [TBL] [Abstract][Full Text] [Related]
6. Functional morphology of bite mechanics in the great barracuda (Sphyraena barracuda). Grubich JR; Rice AN; Westneat MW Zoology (Jena); 2008; 111(1):16-29. PubMed ID: 18082386 [TBL] [Abstract][Full Text] [Related]
7. Are kissing gourami specialized for substrate-feeding? Prey capture kinematics of Helostoma temminckii and other anabantoid fishes. Ferry LA; Konow N; Gibb AC J Exp Zool A Ecol Genet Physiol; 2012 Nov; 317(9):571-9. PubMed ID: 22952136 [TBL] [Abstract][Full Text] [Related]
8. Comparative and developmental functional morphology of the jaws of living and fossil gars (Actinopterygii: Lepisosteidae). Kammerer CF; Grande L; Westneat MW J Morphol; 2006 Sep; 267(9):1017-31. PubMed ID: 15593308 [TBL] [Abstract][Full Text] [Related]
9. The retro-articular process, streptostyly and the caecilian jaw closing system. Summers AP; Wake MH Zoology (Jena); 2005; 108(4):307-15. PubMed ID: 16351979 [TBL] [Abstract][Full Text] [Related]
10. A device for investigating neuromuscular control in the human masticatory system. Türker KS; Brinkworth RS; Abolfathi P; Linke IR; Nazeran H J Neurosci Methods; 2004 Jul; 136(2):141-9. PubMed ID: 15183266 [TBL] [Abstract][Full Text] [Related]
11. Morphological and biomechanical changes of the feeding apparatus in developing southern flounder, Paralichthys lethostigma. Francis AW; Turingan RG J Morphol; 2008 Oct; 269(10):1169-80. PubMed ID: 18473368 [TBL] [Abstract][Full Text] [Related]
12. A forceful upper jaw facilitates picking-based prey capture: biomechanics of feeding in a butterflyfish, Chaetodon trichrous. Copus JM; Gibb AC Zoology (Jena); 2013 Dec; 116(6):336-47. PubMed ID: 24156977 [TBL] [Abstract][Full Text] [Related]
14. Ontogenetic differences in the feeding biomechanics of oviparous and viviparous caecilians (Lissamphibia: Gymnophiona). Kleinteich T Zoology (Jena); 2010 Oct; 113(5):283-94. PubMed ID: 20952171 [TBL] [Abstract][Full Text] [Related]
15. [Biomechanics of the jaw apparatus in the horn-shark (Heterodontus portusjacksoni = Heterodontus philippi)]. Nobiling G Adv Anat Embryol Cell Biol; 1977; 52(6):3-52. PubMed ID: 848378 [TBL] [Abstract][Full Text] [Related]
16. A dynamic model of mouth closing movements in clariid catfishes: the role of enlarged jaw adductors. Van Wassenbergh S; Aerts P; Adriaens D; Herrel A J Theor Biol; 2005 May; 234(1):49-65. PubMed ID: 15721035 [TBL] [Abstract][Full Text] [Related]
17. Jaw lever analysis of Hawaiian gobioid stream fishes: a simulation study of morphological diversity and functional performance. Maie T; Schoenfuss HL; Blob RW J Morphol; 2009 Aug; 270(8):976-83. PubMed ID: 19274745 [TBL] [Abstract][Full Text] [Related]