These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19827473)

  • 1. Interactive effects of mass proportions and coupling properties on external loading in simulated forefoot impact landings.
    Gittoes MJ; Kerwin DG
    J Appl Biomech; 2009 Aug; 25(3):238-46. PubMed ID: 19827473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of loading to the timing of joint kinematic strategies in simulated forefoot impact landings.
    Gittoes MJ; Kerwin DG; Brewin MA
    J Appl Biomech; 2009 Aug; 25(3):229-37. PubMed ID: 19827472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft tissue contributions to impact forces simulated using a four-segment wobbling mass model of forefoot-heel landings.
    Gittoes MJ; Brewin MA; Kerwin DG
    Hum Mov Sci; 2006 Dec; 25(6):775-87. PubMed ID: 16879889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of external ankle support on lower extremity joint mechanics during drop landings.
    Cordova ML; Takahashi Y; Kress GM; Brucker JB; Finch AE
    J Sport Rehabil; 2010 May; 19(2):136-48. PubMed ID: 20543215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact attenuation properties of jazz shoes alter lower limb joint stiffness during jump landings.
    Fong Yan A; Smith RM; Hiller CE; Sinclair PJ
    J Sci Med Sport; 2017 May; 20(5):464-468. PubMed ID: 27784638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weighted vest effects on impact forces and joint work during vertical jump landings in men and women.
    Harry JR; James CR; Dufek JS
    Hum Mov Sci; 2019 Feb; 63():156-163. PubMed ID: 30553141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromechanical synergies in single-leg landing reveal changes in movement control.
    Nordin AD; Dufek JS
    Hum Mov Sci; 2016 Oct; 49():66-78. PubMed ID: 27341613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury.
    Haddas R; Hooper T; James CR; Sizer PS
    J Athl Train; 2016 Dec; 51(12):1003-1012. PubMed ID: 27874298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comment on "Soft-tissue contributions to impact forces simulated using a four-segment wobbling mass model of forefoot-heel landings".
    Johnston TR; Hubbard M
    Hum Mov Sci; 2012 Jun; 31(3):743-5; author reply 746-7. PubMed ID: 21507495
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of fatigue on single-leg hop landing biomechanics.
    Orishimo KF; Kremenic IJ
    J Appl Biomech; 2006 Nov; 22(4):245-54. PubMed ID: 17293621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of lower limb stiffness between male and female dancers and athletes during drop jump landings.
    Ward RE; Fong Yan A; Orishimo KF; Kremenic IJ; Hagins M; Liederbach M; Hiller CE; Pappas E
    Scand J Med Sci Sports; 2019 Jan; 29(1):71-81. PubMed ID: 30242920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influences of sex and posture on joint energetics during drop landings.
    Norcross MF; Shultz SJ; Weinhold PS; Lewek MD; Padua DA; Blackburn JT
    Scand J Med Sci Sports; 2015 Apr; 25(2):e166-75. PubMed ID: 24995548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Biomechanical Comparison of Single-Leg Landing and Unplanned Sidestepping.
    Chinnasee C; Weir G; Sasimontonkul S; Alderson J; Donnelly C
    Int J Sports Med; 2018 Jul; 39(8):636-645. PubMed ID: 29902807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arch structure is associated with unique joint work, relative joint contributions and stiffness during landing.
    Powell DW; Queen RM; Williams DS
    Hum Mov Sci; 2016 Oct; 49():141-7. PubMed ID: 27391463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct dynamics simulation of the impact phase in heel-toe running.
    Gerritsen KG; van den Bogert AJ; Nigg BM
    J Biomech; 1995 Jun; 28(6):661-8. PubMed ID: 7601865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ankle dorsiflexion range of motion is associated with kinematic but not kinetic variables related to bilateral drop-landing performance at various drop heights.
    Howe LP; Bampouras TM; North J; Waldron M
    Hum Mov Sci; 2019 Apr; 64():320-328. PubMed ID: 30836206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-plane, multi-joint lower extremity support moments during a rapid deceleration task: Implications for knee loading.
    Podraza JT; White SC; Ramsey DK
    Hum Mov Sci; 2018 Apr; 58():155-164. PubMed ID: 29448160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower extremity joint loads in habitual rearfoot and mid/forefoot strike runners with normal and shortened stride lengths.
    Boyer ER; Derrick TR
    J Sports Sci; 2018 Mar; 36(5):499-505. PubMed ID: 28481686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peak Lower Extremity Landing Kinematics in Dancers and Nondancers.
    Hansberger BL; Acocello S; Slater LV; Hart JM; Ambegaonkar JP
    J Athl Train; 2018 Apr; 53(4):379-385. PubMed ID: 29528687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of lower extremity joints to energy dissipation during landings.
    Zhang SN; Bates BT; Dufek JS
    Med Sci Sports Exerc; 2000 Apr; 32(4):812-9. PubMed ID: 10776901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.