These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 19827753)

  • 1. Complex dielectric constant of a nematic liquid crystal containing two types of ions: limit of validity of the superposition principle.
    Alexe-Ionescu AL; Barbero G; Lelidis I
    J Phys Chem B; 2009 Nov; 113(44):14747-53. PubMed ID: 19827753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectric characterization of doped M5.
    Barbero G; Freire FC; Vena C; Versace C
    J Phys Chem B; 2008 Sep; 112(35):11049-53. PubMed ID: 18698715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models for ionic contribution to the complex dielectric constant of nematic liquid crystals.
    Alexe-Ionescu AL; Barbero G; Lelidis I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061203. PubMed ID: 20365157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance spectroscopy of water solutions: the role of ions at the liquid-electrode interface.
    Becchi M; AvendaƱo C; Strigazzi A; Barbero G
    J Phys Chem B; 2005 Dec; 109(49):23444-9. PubMed ID: 16375317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric dispersion of water in the frequency range from 10 mHz to 30 MHz.
    Batalioto F; Duarte AR; Barbero G; Neto AM
    J Phys Chem B; 2010 Mar; 114(10):3467-71. PubMed ID: 20178324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical impedance of an electrolytic cell in the presence of generation and recombination of ions.
    Derfel G; Lenzi EK; Yednak CR; Barbero G
    J Chem Phys; 2010 Jun; 132(22):224901. PubMed ID: 20550413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation times of an electrolytic cell subject to an external electric field: role of ambipolar and free diffusion phenomena.
    Alexe-Ionescu AL; Barbero G; Lelidis I; Scalerandi M
    J Phys Chem B; 2007 Nov; 111(46):13287-93. PubMed ID: 17973516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric process of space-charge polarization for an electrolytic cell with blocking electrodes.
    Sawada A
    J Chem Phys; 2008 Aug; 129(6):064701. PubMed ID: 18715096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular theory of dielectric relaxation in nematic dimers.
    Stocchero M; Ferrarini A; Moro GJ; Dunmur DA; Luckhurst GR
    J Chem Phys; 2004 Oct; 121(16):8079-97. PubMed ID: 15485272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the ions on the dynamical response of a nematic cell submitted to a dc voltage.
    Scalerandi M; Pagliusi P; Cipparrone G; Barbero G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051708. PubMed ID: 15244838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independence of the effective dielectric constant of an electrolytic solution on the ionic distribution in the linear Poisson-Nernst-Planck model.
    Alexe-Ionescu AL; Barbero G; Lelidis I
    J Chem Phys; 2014 Aug; 141(8):084505. PubMed ID: 25173019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Debye relaxation in the dielectric response of nematic liquid crystals: surface and memory effects in the adsorption-desorption process of ionic impurities.
    de Paula JL; Santoro PA; Zola RS; Lenzi EK; Evangelista LR; Ciuchi F; Mazzulla A; Scaramuzza N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051705. PubMed ID: 23214803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similarities and differences among the models proposed for real electrodes in the Poisson-Nernst-Planck theory.
    Barbero G; Scalerandi M
    J Chem Phys; 2012 Feb; 136(8):084705. PubMed ID: 22380057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractional diffusion equation and impedance spectroscopy of electrolytic cells.
    Lenzi EK; Evangelista LR; Barbero G
    J Phys Chem B; 2009 Aug; 113(33):11371-4. PubMed ID: 19637845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations.
    Gawad S; Cheung K; Seger U; Bertsch A; Renaud P
    Lab Chip; 2004 Jun; 4(3):241-51. PubMed ID: 15159786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of the ambipolar diffusion in the impedance spectroscopy of an electrolytic cell.
    Barbero G; Lelidis I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051501. PubMed ID: 18233662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of adsorption phenomenon on the impedance spectroscopy of a cell of liquid.
    Barbero G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):062201. PubMed ID: 16089790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics in the smectic a and C phases in a long-chain ferroelectric liquid crystal: 2H NMR, dielectric properties, and a theoretical treatment.
    Domenici V; Geppi M; Veracini CA; Zakharov AV
    J Phys Chem B; 2005 Oct; 109(39):18369-77. PubMed ID: 16853365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous diffusion and memory effects on the impedance spectroscopy for finite-length situations.
    Evangelista LR; Lenzi EK; Barbero G; Macdonald JR
    J Phys Condens Matter; 2011 Dec; 23(48):485005. PubMed ID: 22082531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.