BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19827912)

  • 1. Osteoblast response to rest periods during bioreactor culture of collagen-glycosaminoglycan scaffolds.
    Plunkett NA; Partap S; O'Brien FJ
    Tissue Eng Part A; 2010 Mar; 16(3):943-51. PubMed ID: 19827912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of osteoblasts using rest periods during bioreactor culture on collagen-glycosaminoglycan scaffolds.
    Partap S; Plunkett NA; Kelly DJ; O'Brien FJ
    J Mater Sci Mater Med; 2010 Aug; 21(8):2325-30. PubMed ID: 20091098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three hours of perfusion culture prior to 28 days of static culture, enhances osteogenesis by human cells in a collagen GAG scaffold.
    Keogh MB; Partap S; Daly JS; O'Brien FJ
    Biotechnol Bioeng; 2011 May; 108(5):1203-10. PubMed ID: 21165906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds.
    Jaasma MJ; Plunkett NA; O'Brien FJ
    J Biotechnol; 2008 Feb; 133(4):490-6. PubMed ID: 18221813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate stiffness and contractile behaviour modulate the functional maturation of osteoblasts on a collagen-GAG scaffold.
    Keogh MB; O'Brien FJ; Daly JS
    Acta Biomater; 2010 Nov; 6(11):4305-13. PubMed ID: 20570642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human tissue-engineered bone produced in clinically relevant amounts using a semi-automated perfusion bioreactor system: a preliminary study.
    Janssen FW; van Dijkhuizen-Radersma R; Van Oorschot A; Oostra J; de Bruijn JD; Van Blitterswijk CA
    J Tissue Eng Regen Med; 2010 Jan; 4(1):12-24. PubMed ID: 19834955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffold mesh size affects the osteoblastic differentiation of seeded marrow stromal cells cultured in a flow perfusion bioreactor.
    Holtorf HL; Datta N; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2005 Aug; 74(2):171-80. PubMed ID: 15965910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Fabrication of scaffold with controlled porous structure and flow perfusion culture in vitro].
    Li X; Li DC; Wang L; Lu BH; Wang Z
    Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):579-83. PubMed ID: 16176096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells.
    Kreke MR; Sharp LA; Lee YW; Goldstein AS
    Tissue Eng Part A; 2008 Apr; 14(4):529-37. PubMed ID: 18352827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblast activity on collagen-GAG scaffolds is affected by collagen and GAG concentrations.
    Tierney CM; Jaasma MJ; O'Brien FJ
    J Biomed Mater Res A; 2009 Oct; 91(1):92-101. PubMed ID: 18767061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical stimulation of osteoblasts using steady and dynamic fluid flow.
    Jaasma MJ; O'Brien FJ
    Tissue Eng Part A; 2008 Jul; 14(7):1213-23. PubMed ID: 18433309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Development of rotating perfusion bioreactor system and application for bone tissue engineering].
    Li X; Li D; Wang L; Wang Z; Lu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):66-70. PubMed ID: 17333894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow perfusion culture induces the osteoblastic differentiation of marrow stroma cell-scaffold constructs in the absence of dexamethasone.
    Holtorf HL; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2005 Mar; 72(3):326-34. PubMed ID: 15657936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering.
    Du D; Furukawa KS; Ushida T
    Biotechnol Bioeng; 2009 Apr; 102(6):1670-8. PubMed ID: 19160373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblastic cell proliferation with uniform distribution in a large scaffold using radial-flow bioreactor.
    Arano T; Sato T; Matsuzaka K; Ikada Y; Yoshinari M
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1387-98. PubMed ID: 20367244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of reduced oxygen tension and long-term mechanical stimulation on chondrocyte-polymer constructs.
    Wernike E; Li Z; Alini M; Grad S
    Cell Tissue Res; 2008 Feb; 331(2):473-83. PubMed ID: 17957384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics.
    Holtorf HL; Sheffield TL; Ambrose CG; Jansen JA; Mikos AG
    Ann Biomed Eng; 2005 Sep; 33(9):1238-48. PubMed ID: 16133930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Rotating three-dimensional dynamic culture of osteoblasts seeded on segmental scaffolds with controlled internal channel architectures for construction of segmental tissue engineered bone in vitro].
    Wang L; Wang Z; Li X; Li DC; Xu SF; Lu BH
    Zhonghua Yi Xue Za Zhi; 2007 Jan; 87(3):200-3. PubMed ID: 17425853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor.
    Li D; Tang T; Lu J; Dai K
    Tissue Eng Part A; 2009 Oct; 15(10):2773-83. PubMed ID: 19226211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and detection of tissue-engineered bones with bio-derived scaffolds in a rotating bioreactor.
    Song K; Yang Z; Liu T; Zhi W; Li X; Deng L; Cui Z; Ma X
    Biotechnol Appl Biochem; 2006 Sep; 45(Pt 2):65-74. PubMed ID: 16681463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.