These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19828044)

  • 1. Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea.
    Blombach F; Makarova KS; Marrero J; Siebers B; Koonin EV; van der Oost J
    Biol Direct; 2009 Oct; 4():39. PubMed ID: 19828044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and "Korarchaeota".
    Koonin EV; Makarova KS; Elkins JG
    Biol Direct; 2007 Dec; 2():38. PubMed ID: 18081935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetics of eukaryotic RNA polymerases I, II, and III.
    Archambault J; Friesen JD
    Microbiol Rev; 1993 Sep; 57(3):703-24. PubMed ID: 8246845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors.
    Tahirov TH; Makarova KS; Rogozin IB; Pavlov YI; Koonin EV
    Biol Direct; 2009 Mar; 4():11. PubMed ID: 19296856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Archaeal RNase P has multiple protein subunits homologous to eukaryotic nuclear RNase P proteins.
    Hall TA; Brown JW
    RNA; 2002 Mar; 8(3):296-306. PubMed ID: 12003490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases.
    Thomm M; Reich C; Grünberg S; Naji S
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):18-22. PubMed ID: 19143595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota.
    Brochier-Armanet C; Boussau B; Gribaldo S; Forterre P
    Nat Rev Microbiol; 2008 Mar; 6(3):245-52. PubMed ID: 18274537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early evolution of eukaryotic DNA-dependent RNA polymerases.
    Kwapisz M; Beckouët F; Thuriaux P
    Trends Genet; 2008 May; 24(5):211-5. PubMed ID: 18384908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ancient origin, functional conservation and fast evolution of DNA-dependent RNA polymerase III.
    Proshkina GM; Shematorova EK; Proshkin SA; Zaros C; Thuriaux P; Shpakovski GV
    Nucleic Acids Res; 2006; 34(13):3615-24. PubMed ID: 16877568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota.
    Spang A; Hatzenpichler R; Brochier-Armanet C; Rattei T; Tischler P; Spieck E; Streit W; Stahl DA; Wagner M; Schleper C
    Trends Microbiol; 2010 Aug; 18(8):331-40. PubMed ID: 20598889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group.
    Nunoura T; Takaki Y; Kakuta J; Nishi S; Sugahara J; Kazama H; Chee GJ; Hattori M; Kanai A; Atomi H; Takai K; Takami H
    Nucleic Acids Res; 2011 Apr; 39(8):3204-23. PubMed ID: 21169198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology between RNA polymerases of poxviruses, prokaryotes, and eukaryotes: nucleotide sequence and transcriptional analysis of vaccinia virus genes encoding 147-kDa and 22-kDa subunits.
    Broyles SS; Moss B
    Proc Natl Acad Sci U S A; 1986 May; 83(10):3141-5. PubMed ID: 3517852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of ABC10alpha, an essential polypeptide shared by all three forms of eukaryotic DNA-dependent RNA polymerases.
    Rubbi L; Labarre-Mariotte S; Chédin S; Thuriaux P
    J Biol Chem; 1999 Oct; 274(44):31485-92. PubMed ID: 10531351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The deep archaeal roots of eukaryotes.
    Yutin N; Makarova KS; Mekhedov SL; Wolf YI; Koonin EV
    Mol Biol Evol; 2008 Aug; 25(8):1619-30. PubMed ID: 18463089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea.
    Makarova KS; Sorokin AV; Novichkov PS; Wolf YI; Koonin EV
    Biol Direct; 2007 Nov; 2():33. PubMed ID: 18042280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-modifying machines in archaea.
    Omer AD; Ziesche S; Decatur WA; Fournier MJ; Dennis PP
    Mol Microbiol; 2003 May; 48(3):617-29. PubMed ID: 12694609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Structural-functional characteristics of the Schizosaccharomyces pombe rpb8+ gene, coding the subunit of RNA polymerase I-III, specific only for eukaryotes].
    Shpakovskiĭ GV; Proshkin SA; Kaiushin AL; Korosteleva MD; Lebedenko EN
    Bioorg Khim; 1998 Feb; 24(2):119-25. PubMed ID: 10335407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Archaeal DNA replication: identifying the pieces to solve a puzzle.
    Cann IK; Ishino Y
    Genetics; 1999 Aug; 152(4):1249-67. PubMed ID: 10430556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach.
    Koonin EV; Wolf YI; Aravind L
    Genome Res; 2001 Feb; 11(2):240-52. PubMed ID: 11157787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.