These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19828199)

  • 21. Selection and characterization of lipase abzyme from phage displayed antibody libraries.
    Leong MK; Chen C; Shar KC; Shiuan D
    Biochem Biophys Res Commun; 2007 Sep; 361(3):567-73. PubMed ID: 17673171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systematic classification of CDR-L3 in antibodies: implications of the light chain subtypes and the VL-VH interface.
    Kuroda D; Shirai H; Kobori M; Nakamura H
    Proteins; 2009 Apr; 75(1):139-46. PubMed ID: 18798566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic analysis of the phosphonate transition-state analogue-derived catalytic and non-catalytic antibody.
    Nishi Y; Yamamoto N; Shimazaki K; Takahashi-Ando N; Kakinuma H; Jialin S; Ruzheinikov SN; Muranova TA; Rice DW; Kajihara Y
    J Biochem; 2007 Oct; 142(4):421-33. PubMed ID: 17981825
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Positional ordering of reacting groups contributes significantly to the efficiency of proton transfer at an antibody active site.
    Seebeck FP; Hilvert D
    J Am Chem Soc; 2005 Feb; 127(4):1307-12. PubMed ID: 15669871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human catalytic antibody Se-scFv-B3 with high glutathione peroxidase activity.
    Huo R; Wei J; Xu J; Lv S; Zheng Q; Yan F; Su J; Fan J; Li J; Duan Y; Yu Y; Jin F; Sun W; Shi Y; Cong D; Li W; Yan G; Luo G
    J Mol Recognit; 2008; 21(5):324-9. PubMed ID: 18574795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Innate antibody catalysis.
    Gololobov G; Sun M; Paul S
    Mol Immunol; 1999 Dec; 36(18):1215-22. PubMed ID: 10684961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two secondary carbohydrate binding sites on the surface of barley alpha-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules.
    Nielsen MM; Bozonnet S; Seo ES; Mótyán JA; Andersen JM; Dilokpimol A; Abou Hachem M; Gyémánt G; Naested H; Kandra L; Sigurskjold BW; Svensson B
    Biochemistry; 2009 Aug; 48(32):7686-97. PubMed ID: 19606835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human immunoglobulin repertoires against tetanus toxoid contain a large and diverse fraction of high-affinity promiscuous V(H) genes.
    de Kruif J; Kramer A; Visser T; Clements C; Nijhuis R; Cox F; van der Zande V; Smit R; Pinto D; Throsby M; Logtenberg T
    J Mol Biol; 2009 Apr; 387(3):548-58. PubMed ID: 19361421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the functional roles of amino acid residues in enzyme catalysis.
    Holliday GL; Mitchell JB; Thornton JM
    J Mol Biol; 2009 Jul; 390(3):560-77. PubMed ID: 19447117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of single chain anti-cocaine catalytic antibodies.
    McKenzie KM; Mee JM; Rogers CJ; Hixon MS; Kaufmann GF; Janda KD
    J Mol Biol; 2007 Jan; 365(3):722-31. PubMed ID: 17084858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of humanized anti-DNA hydrolyzing catalytic antibodies by complementarity determining region grafting.
    Kim DS; Lee SH; Kim JS; Lee SC; Kwon MH; Kim YS
    Biochem Biophys Res Commun; 2009 Feb; 379(2):314-8. PubMed ID: 19103171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic study of proton transfer and hysteresis in catalytic antibody 16E7 by site-directed mutagenesis and homology modeling.
    Zheng L; Manetsch R; Woggon WD; Baumann U; Reymond JL
    Bioorg Med Chem; 2005 Feb; 13(4):1021-9. PubMed ID: 15670909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accessory active site residues of Streptomyces sp. N174 chitosanase: variations on a common theme in the lysozyme superfamily.
    Lacombe-Harvey ME; Fukamizo T; Gagnon J; Ghinet MG; Dennhart N; Letzel T; Brzezinski R
    FEBS J; 2009 Feb; 276(3):857-69. PubMed ID: 19143844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new algorithm to convert a normal antibody into the corresponding catalytic antibody.
    Hifumi E; Taguchi H; Tsuda H; Minagawa T; Nonaka T; Uda T
    Sci Adv; 2020 Mar; 6(13):eaay6441. PubMed ID: 32232151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy-based analysis and prediction of the orientation between light- and heavy-chain antibody variable domains.
    Narayanan A; Sellers BD; Jacobson MP
    J Mol Biol; 2009 May; 388(5):941-53. PubMed ID: 19324053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of the framework core residues on the biophysical properties of immunoglobulin heavy chain variable domains.
    Honegger A; Malebranche AD; Röthlisberger D; Plückthun A
    Protein Eng Des Sel; 2009 Mar; 22(3):121-34. PubMed ID: 19136675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induction of covalent binding antibodies.
    Armentano F; Knight T; Makker S; Tramontano A
    Immunol Lett; 2006 Feb; 103(1):51-7. PubMed ID: 16297987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Creation of a ribonuclease abzyme through site-directed mutagenesis.
    Fletcher MC; Kuderova A; Cygler M; Lee JS
    Nat Biotechnol; 1998 Nov; 16(11):1065-7. PubMed ID: 9831037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expanding the 43C9 class of catalytic antibodies using a chain-shuffling approach.
    Miller GP; Posner BA; Benkovic SJ
    Bioorg Med Chem; 1997 Mar; 5(3):581-90. PubMed ID: 9113336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of immune complexes of idiotypic catalytic and anti-idiotypic inhibitory antibodies in plasma of type 1 diabetic subjects.
    Pagetta A; Tramentozzi E; Corbetti L; Frasson M; Brunati AM; Finotti P
    Mol Immunol; 2007 Apr; 44(11):2870-83. PubMed ID: 17298847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.