These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 19828328)
1. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Liu J; Hua W; Zhan G; Wei F; Wang X; Liu G; Wang H Plant Physiol Biochem; 2010 Jan; 48(1):9-15. PubMed ID: 19828328 [TBL] [Abstract][Full Text] [Related]
2. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. Wu XL; Liu ZH; Hu ZH; Huang RZ J Integr Plant Biol; 2014 Jun; 56(6):582-93. PubMed ID: 24393360 [TBL] [Abstract][Full Text] [Related]
3. Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp. Ma W; Kong Q; Arondel V; Kilaru A; Bates PD; Thrower NA; Benning C; Ohlrogge JB PLoS One; 2013; 8(7):e68887. PubMed ID: 23922666 [TBL] [Abstract][Full Text] [Related]
4. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene. Elhiti M; Yang C; Chan A; Durnin DC; Belmonte MF; Ayele BT; Tahir M; Stasolla C J Exp Bot; 2012 Jul; 63(12):4447-61. PubMed ID: 22563121 [TBL] [Abstract][Full Text] [Related]
5. Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis. Liu F; Xia Y; Wu L; Fu D; Hayward A; Luo J; Yan X; Xiong X; Fu P; Wu G; Lu C Gene; 2015 Feb; 557(2):163-71. PubMed ID: 25523093 [TBL] [Abstract][Full Text] [Related]
6. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds. Kanai M; Mano S; Kondo M; Hayashi M; Nishimura M Plant Biotechnol J; 2016 May; 14(5):1241-50. PubMed ID: 26503031 [TBL] [Abstract][Full Text] [Related]
7. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. Liu J; Hua W; Yang HL; Zhan GM; Li RJ; Deng LB; Wang XF; Liu GH; Wang HZ J Exp Bot; 2012 Jun; 63(10):3727-40. PubMed ID: 22442419 [TBL] [Abstract][Full Text] [Related]
8. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. Ding LN; Gu SL; Zhu FG; Ma ZY; Li J; Li M; Wang Z; Tan XL BMC Plant Biol; 2020 Jan; 20(1):21. PubMed ID: 31931712 [TBL] [Abstract][Full Text] [Related]
9. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
10. Heat Stress Suppresses Brassica napus Seed Oil Accumulation by Inhibition of Photosynthesis and BnWRI1 Pathway. Huang R; Liu Z; Xing M; Yang Y; Wu X; Liu H; Liang W Plant Cell Physiol; 2019 Jul; 60(7):1457-1470. PubMed ID: 30994920 [TBL] [Abstract][Full Text] [Related]
11. Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Sanjaya ; Durrett TP; Weise SE; Benning C Plant Biotechnol J; 2011 Oct; 9(8):874-83. PubMed ID: 22003502 [TBL] [Abstract][Full Text] [Related]
12. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Tan H; Yang X; Zhang F; Zheng X; Qu C; Mu J; Fu F; Li J; Guan R; Zhang H; Wang G; Zuo J Plant Physiol; 2011 Jul; 156(3):1577-88. PubMed ID: 21562329 [TBL] [Abstract][Full Text] [Related]
13. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus. Ding LN; Guo XJ; Li M; Fu ZL; Yan SZ; Zhu KM; Wang Z; Tan XL Plant Cell Rep; 2019 Feb; 38(2):243-253. PubMed ID: 30535511 [TBL] [Abstract][Full Text] [Related]
14. Cumulative effect of heterologous AtWRI1 gene expression and endogenous BjAGPase gene silencing increases seed lipid content in Indian mustard Brassica juncea. Bhattacharya S; Das N; Maiti MK Plant Physiol Biochem; 2016 Oct; 107():204-213. PubMed ID: 27314514 [TBL] [Abstract][Full Text] [Related]
15. Deletion of a C-terminal intrinsically disordered region of WRINKLED1 affects its stability and enhances oil accumulation in Arabidopsis. Ma W; Kong Q; Grix M; Mantyla JJ; Yang Y; Benning C; Ohlrogge JB Plant J; 2015 Sep; 83(5):864-74. PubMed ID: 26305482 [TBL] [Abstract][Full Text] [Related]
16. Identification, characterization and field testing of Brassica napus mutants producing high-oleic oils. Bai S; Engelen S; Denolf P; Wallis JG; Lynch K; Bengtsson JD; Van Thournout M; Haesendonckx B; Browse J Plant J; 2019 Apr; 98(1):33-41. PubMed ID: 30536486 [TBL] [Abstract][Full Text] [Related]
17. An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus. Zhang Z; Dunwell JM; Zhang YM BMC Plant Biol; 2018 Dec; 18(1):328. PubMed ID: 30514240 [TBL] [Abstract][Full Text] [Related]
18. The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Nesi N; Lucas MO; Auger B; Baron C; Lécureuil A; Guerche P; Kronenberger J; Lepiniec L; Debeaujon I; Renard M Plant Cell Rep; 2009 Apr; 28(4):601-17. PubMed ID: 19153740 [TBL] [Abstract][Full Text] [Related]
19. Brassica GLABRA2 genes: analysis of function related to seed oil content and development of functional markers. Chai G; Bai Z; Wei F; King GJ; Wang C; Shi L; Dong C; Chen H; Liu S Theor Appl Genet; 2010 May; 120(8):1597-610. PubMed ID: 20162256 [TBL] [Abstract][Full Text] [Related]
20. 14-3-3 protein mediates plant seed oil biosynthesis through interaction with AtWRI1. Ma W; Kong Q; Mantyla JJ; Yang Y; Ohlrogge JB; Benning C Plant J; 2016 Oct; 88(2):228-235. PubMed ID: 27322486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]