These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19828502)

  • 1. Rate-dependent control strategies stabilize limb forces during human locomotion.
    Yen JT; Chang YH
    J R Soc Interface; 2010 May; 7(46):801-10. PubMed ID: 19828502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping.
    Auyang AG; Yen JT; Chang YH
    Exp Brain Res; 2009 Jan; 192(2):253-64. PubMed ID: 18839158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control strategy for stabilizing force with goal-equivalent joint torques is frequency-dependent during human hopping.
    Yen JT; Chang YH
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2115-8. PubMed ID: 19964783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint-level kinetic redundancy is exploited to control limb-level forces during human hopping.
    Yen JT; Auyang AG; Chang YH
    Exp Brain Res; 2009 Jul; 196(3):439-51. PubMed ID: 19495732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint stiffness of the ankle and the knee in running.
    Günther M; Blickhan R
    J Biomech; 2002 Nov; 35(11):1459-74. PubMed ID: 12413965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions.
    Seipel JE; Holmes PJ; Full RJ
    Biol Cybern; 2004 Aug; 91(2):76-90. PubMed ID: 15322851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humans robustly adhere to dynamic walking principles by harnessing motor abundance to control forces.
    Toney ME; Chang YH
    Exp Brain Res; 2013 Dec; 231(4):433-43. PubMed ID: 24081680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling a system with redundant degrees of freedom. I. Torque distribution in still standing stick insects.
    Lévy J; Cruse H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Aug; 194(8):719-33. PubMed ID: 18642005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics of lower limbs during walking are emulated by springy walking model with a compliantly connected, off-centered curvy foot.
    Lim H; Park S
    J Biomech; 2018 Apr; 71():119-126. PubMed ID: 29456169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intralimb compensation strategy depends on the nature of joint perturbation in human hopping.
    Chang YH; Roiz RA; Auyang AG
    J Biomech; 2008; 41(9):1832-9. PubMed ID: 18499112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leg Joint Mechanics When Hopping at Different Frequencies.
    Qiao M
    J Appl Biomech; 2021 Jun; 37(3):263-271. PubMed ID: 33975280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swing Velocity Profiles of Small Limbs Can Arise from Transient Passive Torques of the Antagonist Muscle Alone.
    von Twickel A; Guschlbauer C; Hooper SL; Büschges A
    Curr Biol; 2019 Jan; 29(1):1-12.e7. PubMed ID: 30581019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Torque patterns of the limbs of small therian mammals during locomotion on flat ground.
    Witte H; Biltzinger J; Hackert R; Schilling N; Schmidt M; Reich C; Fischer MS
    J Exp Biol; 2002 May; 205(Pt 9):1339-53. PubMed ID: 11948209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Templates and anchors: neuromechanical hypotheses of legged locomotion on land.
    Full RJ; Koditschek DE
    J Exp Biol; 1999 Dec; 202(Pt 23):3325-32. PubMed ID: 10562515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling.
    Fregly BJ; Zajac FE
    J Biomech; 1996 Jan; 29(1):81-90. PubMed ID: 8839020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical models for insect locomotion: active muscles and energy losses.
    Schmitt J; Holmes P
    Biol Cybern; 2003 Jul; 89(1):43-55. PubMed ID: 12836032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leg-adjustment strategies for stable running in three dimensions.
    Peuker F; Maufroy C; Seyfarth A
    Bioinspir Biomim; 2012 Sep; 7(3):036002. PubMed ID: 22498642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury.
    Chang YH; Auyang AG; Scholz JP; Nichols TR
    J Exp Biol; 2009 Nov; 212(Pt 21):3511-21. PubMed ID: 19837893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromechanical control of leg length and orientation in children and adults during single-leg hopping.
    Beerse M; Wu J
    Exp Brain Res; 2019 Jul; 237(7):1745-1757. PubMed ID: 31030280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.