These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19828508)

  • 1. Decreasing stochasticity through enhanced seasonality in measles epidemics.
    Mantilla-Beniers NB; Bjørnstad ON; Grenfell BT; Rohani P
    J R Soc Interface; 2010 May; 7(46):727-39. PubMed ID: 19828508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human birth seasonality: latitudinal gradient and interplay with childhood disease dynamics.
    Martinez-Bakker M; Bakker KM; King AA; Rohani P
    Proc Biol Sci; 2014 May; 281(1783):20132438. PubMed ID: 24695423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictability in a highly stochastic system: final size of measles epidemics in small populations.
    Caudron Q; Mahmud AS; Metcalf CJ; Gottfreðsson M; Viboud C; Cliff AD; Grenfell BT
    J R Soc Interface; 2015 Jan; 12(102):20141125. PubMed ID: 25411411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating enhanced prevaccination measles transmission hotspots in the context of cross-scale dynamics.
    Becker AD; Birger RB; Teillant A; Gastanaduy PA; Wallace GS; Grenfell BT
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14595-14600. PubMed ID: 27872300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating variability in models for recurrent epidemics: assessing the use of moment closure techniques.
    Lloyd AL
    Theor Popul Biol; 2004 Feb; 65(1):49-65. PubMed ID: 14642344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of birth seasonality on dynamics of acute immunizing infections in Sub-Saharan Africa.
    Dorélien AM; Ballesteros S; Grenfell BT
    PLoS One; 2013; 8(10):e75806. PubMed ID: 24204580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rural-urban gradient in seasonal forcing of measles transmission in Niger.
    Ferrari MJ; Djibo A; Grais RF; Bharti N; Grenfell BT; Bjornstad ON
    Proc Biol Sci; 2010 Sep; 277(1695):2775-82. PubMed ID: 20427338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic amplification in an epidemic model with seasonal forcing.
    Black AJ; McKane AJ
    J Theor Biol; 2010 Nov; 267(1):85-94. PubMed ID: 20723547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of seasonal variation patterns on recurrent outbreaks in epidemic models.
    Tanaka G; Aihara K
    J Theor Biol; 2013 Jan; 317():87-95. PubMed ID: 23041433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the infectious period distribution on predicted transitions in childhood disease dynamics.
    Krylova O; Earn DJ
    J R Soc Interface; 2013 Jul; 10(84):20130098. PubMed ID: 23676892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamics of measles in sub-Saharan Africa.
    Ferrari MJ; Grais RF; Bharti N; Conlan AJ; Bjørnstad ON; Wolfson LJ; Guerin PJ; Djibo A; Grenfell BT
    Nature; 2008 Feb; 451(7179):679-84. PubMed ID: 18256664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics.
    Xia Y; Bjørnstad ON; Grenfell BT
    Am Nat; 2004 Aug; 164(2):267-81. PubMed ID: 15278849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple model for complex dynamical transitions in epidemics.
    Earn DJ; Rohani P; Bolker BM; Grenfell BT
    Science; 2000 Jan; 287(5453):667-70. PubMed ID: 10650003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing the dynamics of rubella relative to measles: the role of stochasticity.
    Rozhnova G; Metcalf CJ; Grenfell BT
    J R Soc Interface; 2013 Nov; 10(88):20130643. PubMed ID: 24026472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic and stochastic models for the seasonal variability of measles transmission.
    Mollison D; Din SU
    Math Biosci; 1993; 117(1-2):155-77. PubMed ID: 8400572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A seasonal analysis of Chinese births.
    Abeysinghe T
    J Appl Stat; 1991; 18(2):275-86. PubMed ID: 12343764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First principles modeling of nonlinear incidence rates in seasonal epidemics.
    Ponciano JM; Capistrán MA
    PLoS Comput Biol; 2011 Feb; 7(2):e1001079. PubMed ID: 21379320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonality and the persistence and invasion of measles.
    Conlan AJ; Grenfell BT
    Proc Biol Sci; 2007 May; 274(1614):1133-41. PubMed ID: 17327206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measles in England and Wales--I: An analysis of factors underlying seasonal patterns.
    Fine PE; Clarkson JA
    Int J Epidemiol; 1982 Mar; 11(1):5-14. PubMed ID: 7085179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epidemiological effects of seasonal oscillations in birth rates.
    He D; Earn DJ
    Theor Popul Biol; 2007 Sep; 72(2):274-91. PubMed ID: 17588629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.