These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19828834)

  • 1. Expanding the functional spectrum of vitamin K in bone. Focus on: "Vitamin K promotes mineralization, osteoblast to osteocyte transition, and an anti-catabolic phenotype by {gamma}-carboxylation-dependent and -independent mechanisms".
    Rubinacci A
    Am J Physiol Cell Physiol; 2009 Dec; 297(6):C1336-8. PubMed ID: 19828834
    [No Abstract]   [Full Text] [Related]  

  • 2. Vitamin K promotes mineralization, osteoblast-to-osteocyte transition, and an anticatabolic phenotype by {gamma}-carboxylation-dependent and -independent mechanisms.
    Atkins GJ; Welldon KJ; Wijenayaka AR; Bonewald LF; Findlay DM
    Am J Physiol Cell Physiol; 2009 Dec; 297(6):C1358-67. PubMed ID: 19675304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoblast and osteocyte: games without frontiers.
    Capulli M; Paone R; Rucci N
    Arch Biochem Biophys; 2014 Nov; 561():3-12. PubMed ID: 24832390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteocytes as a record of bone formation dynamics: a mathematical model of osteocyte generation in bone matrix.
    Buenzli PR
    J Theor Biol; 2015 Jan; 364():418-27. PubMed ID: 25285894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix gamma-carboxyglutamic acid protein is a key regulator of PTH-mediated inhibition of mineralization in MC3T3-E1 osteoblast-like cells.
    Gopalakrishnan R; Ouyang H; Somerman MJ; McCauley LK; Franceschi RT
    Endocrinology; 2001 Oct; 142(10):4379-88. PubMed ID: 11564701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin K, osteoporosis and degenerative diseases of ageing.
    Vermeer C; Theuwissen E
    Menopause Int; 2011 Mar; 17(1):19-23. PubMed ID: 21427421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining the Properties of an Array of -NH
    Fawcett SA; Curran JM; Chen R; Rhodes NP; Murphy MF; Wilson P; Ranganath L; Dillon JP; Gallagher JA; Hunt JA
    Calcif Tissue Int; 2017 Jan; 100(1):95-106. PubMed ID: 27796463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SaOS2 Osteosarcoma cells as an in vitro model for studying the transition of human osteoblasts to osteocytes.
    Prideaux M; Wijenayaka AR; Kumarasinghe DD; Ormsby RT; Evdokiou A; Findlay DM; Atkins GJ
    Calcif Tissue Int; 2014 Aug; 95(2):183-93. PubMed ID: 24916279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties and biosynthesis of a vitamin K-dependent calcium binding protein in bone.
    Lian JB; Hauschka PV; Gallop PM
    Fed Proc; 1978 Oct; 37(12):2615-20. PubMed ID: 700171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin K and Bone Metabolism: A Review of the Latest Evidence in Preclinical Studies.
    Akbari S; Rasouli-Ghahroudi AA
    Biomed Res Int; 2018; 2018():4629383. PubMed ID: 30050932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix GLA protein is a developmental regulator of chondrocyte mineralization and, when constitutively expressed, blocks endochondral and intramembranous ossification in the limb.
    Yagami K; Suh JY; Enomoto-Iwamoto M; Koyama E; Abrams WR; Shapiro IM; Pacifici M; Iwamoto M
    J Cell Biol; 1999 Nov; 147(5):1097-108. PubMed ID: 10579728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Recent discoveries on the biochemical significance of vitamin K and some characteristics of vitamin K dependent proteins].
    Kolb E
    Z Gesamte Inn Med; 1981 Nov; 36(21):801-6. PubMed ID: 7331379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Buried alive: how osteoblasts become osteocytes.
    Franz-Odendaal TA; Hall BK; Witten PE
    Dev Dyn; 2006 Jan; 235(1):176-90. PubMed ID: 16258960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix mineralization and the differentiation of osteocyte-like cells in culture.
    Mikuni-Takagaki Y; Kakai Y; Satoyoshi M; Kawano E; Suzuki Y; Kawase T; Saito S
    J Bone Miner Res; 1995 Feb; 10(2):231-42. PubMed ID: 7754802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism by which MLO-A5 late osteoblasts/early osteocytes mineralize in culture: similarities with mineralization of lamellar bone.
    Barragan-Adjemian C; Nicolella D; Dusevich V; Dallas MR; Eick JD; Bonewald LF
    Calcif Tissue Int; 2006 Nov; 79(5):340-53. PubMed ID: 17115241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche.
    Birmingham E; Niebur GL; McHugh PE; Shaw G; Barry FP; McNamara LM
    Eur Cell Mater; 2012 Jan; 23():13-27. PubMed ID: 22241610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying osteocyte function using the cell lines MLO-Y4 and MLO-A5.
    Rosser J; Bonewald LF
    Methods Mol Biol; 2012; 816():67-81. PubMed ID: 22130923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitamin D endocrinology of bone mineralization.
    van Driel M; van Leeuwen JPTM
    Mol Cell Endocrinol; 2017 Sep; 453():46-51. PubMed ID: 28606868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human primary osteocyte differentiation in a 3D culture system.
    Boukhechba F; Balaguer T; Michiels JF; Ackermann K; Quincey D; Bouler JM; Pyerin W; Carle GF; Rochet N
    J Bone Miner Res; 2009 Nov; 24(11):1927-35. PubMed ID: 19419324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of 3D osteoblast migration and bone apatite during in vitro early osteocytogenesis.
    Robin M; Almeida C; Azaïs T; Haye B; Illoul C; Lesieur J; Giraud-Guille MM; Nassif N; Hélary C
    Bone; 2016 Jul; 88():146-156. PubMed ID: 27150828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.