These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19829657)

  • 1. Efficient stimulated Raman scattering externally seeded by molecular spontaneous emission.
    Gomes AS; Lawandy NM
    Opt Lett; 1994 Mar; 19(6):408-10. PubMed ID: 19829657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased efficiency of vacuum ultraviolet generation by stimulated anti-stokes Raman scattering with stokes seeding.
    Goehlich A; Czarnetzki U; Döbele HF
    Appl Opt; 1998 Dec; 37(36):8453-9. PubMed ID: 18301674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient conical emission of stimulated Raman Stokes light generated by a Bessel pump beam.
    Niggl L; Maier M
    Opt Lett; 1997 Jun; 22(12):910-2. PubMed ID: 18185703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient anti-Stokes generation via intermodal stimulated Raman scattering in gas-filled hollow-core PCF.
    Trabold BM; Abdolvand A; Euser TG; Russell PS
    Opt Express; 2013 Dec; 21(24):29711-8. PubMed ID: 24514522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Raman laser system using stimulated Brillouin scattering with different confocal parameters for CH(4).
    Park YH; Lee DW; Kong HJ; Kim Y
    Appl Opt; 2007 Aug; 46(22):5516-21. PubMed ID: 17676168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injection seeding for the enhancement of high-order anti-Stokes stimulated Raman scattering.
    Wada S; Moriwaki H; Nakamura A; Tashiro H
    Opt Lett; 1995 Apr; 20(8):848-50. PubMed ID: 19859350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-beam double stimulated Raman scatterings: Cascading configuration.
    Rao BJ; Cho M
    J Chem Phys; 2018 Mar; 148(11):114201. PubMed ID: 29566530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-Stokes Raman conversion in silicon waveguides.
    Claps R; Raghunathan V; Dimitropoulos D; Jalali B
    Opt Express; 2003 Nov; 11(22):2862-72. PubMed ID: 19471406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient tunable ultraviolet source based on stimulated Raman scattering of an excimer-pumped dye laser.
    Brink DJ; Proch D
    Opt Lett; 1982 Oct; 7(10):494-6. PubMed ID: 19714068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO(4) crystal.
    Erný P; Jelínková H
    Opt Lett; 2002 Mar; 27(5):360-2. PubMed ID: 18007803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intense backward Raman lasers in CH(4) and H(2).
    Sentrayan K; Michael A; Kushawaha V
    Appl Opt; 1993 Feb; 32(6):930-4. PubMed ID: 20802769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient 1.3-microm second-stokes PbWO4 Raman laser.
    Gad GM; Eichler HJ; Kaminskii AA
    Opt Lett; 2003 Mar; 28(6):426-8. PubMed ID: 12659268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8  μm.
    Li Z; Huang W; Cui Y; Wang Z
    Opt Lett; 2018 Oct; 43(19):4671-4674. PubMed ID: 30272711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doping of an absorbent into a Raman crystal for suppression of higher-order Stokes generation.
    Urata Y; Wada S; Tashiro H; Fukuda T
    Opt Lett; 2000 May; 25(10):752-4. PubMed ID: 18064173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated raman scattering-active crystals.
    Kaminskii AA; Eichler HJ; Ueda K; Klassen NV; Redkin BS; Li LE; Findeisen J; Jaque D; García-Sole J; Fernández J; Balda R
    Appl Opt; 1999 Jul; 38(21):4533-47. PubMed ID: 18323938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective suppression of CARS signal with three-beam competing stimulated Raman scattering processes.
    Choi DS; Rao BJ; Kim D; Shim SH; Rhee H; Cho M
    Phys Chem Chem Phys; 2018 Jun; 20(25):17156-17170. PubMed ID: 29900451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient stimulated Raman scattering due to absence of second Stokes growth.
    Carlsten JL; Telle JM; Wenzel RG
    Opt Lett; 1984 Aug; 9(8):353-5. PubMed ID: 19721596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-efficiency pulse compression with externally pumped intracavity Raman oscillators.
    de Rougemont F; Xian DK; Frey R; Pradère F
    Opt Lett; 1984 Oct; 9(10):460-2. PubMed ID: 19721633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence seeding of weaker-gain Raman modes in microdroplets: enhancement of stimulated Raman scattering.
    Kwok AS; Chang RK
    Opt Lett; 1992 Sep; 17(18):1262-4. PubMed ID: 19798151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Stokes wavelength generation in H(2), D(2), and CH(4) for lidar aerosol measurements.
    Chu Z; Singh UN; Wilkerson TD
    Appl Opt; 1991 Oct; 30(30):4350-7. PubMed ID: 20717207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.