BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 19830566)

  • 21. Multiple-channel emulsion chips utilizing pneumatic choppers for biotechnology applications.
    Lin YH; Chen CT; Huang LL; Lee GB
    Biomed Microdevices; 2007 Dec; 9(6):833-43. PubMed ID: 17577672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A rapid, reliable, and automatable lab-on-a-chip interface.
    Kortmann H; Blank LM; Schmid A
    Lab Chip; 2009 May; 9(10):1455-60. PubMed ID: 19417914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding.
    Abgrall P; Low LN; Nguyen NT
    Lab Chip; 2007 Apr; 7(4):520-2. PubMed ID: 17389971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.
    Lin CH; Lee GB; Fu LM; Chen SH
    Biosens Bioelectron; 2004 Jul; 20(1):83-90. PubMed ID: 15142580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic integration of substantially round glass capillaries for lateral patch clamping on chip.
    Ong WL; Tang KC; Agarwal A; Nagarajan R; Luo LW; Yobas L
    Lab Chip; 2007 Oct; 7(10):1357-66. PubMed ID: 17896022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A facile "liquid-molding" method to fabricate PDMS microdevices with 3-dimensional channel topography.
    Liu X; Wang Q; Qin J; Lin B
    Lab Chip; 2009 May; 9(9):1200-5. PubMed ID: 19370237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A microbead array chemical sensor using capillary-based sample introduction: toward the development of an "electronic tongue".
    Sohn YS; Goodey A; Anslyn EV; McDevitt JT; Shear JB; Neikirk DP
    Biosens Bioelectron; 2005 Aug; 21(2):303-12. PubMed ID: 16023957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sample flow switching techniques on microfluidic chips.
    Pan YJ; Lin JJ; Luo WJ; Yang RJ
    Biosens Bioelectron; 2006 Feb; 21(8):1644-8. PubMed ID: 16112854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles.
    Kang E; Shin SJ; Lee KH; Lee SH
    Lab Chip; 2010 Jul; 10(14):1856-61. PubMed ID: 20454720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic chip to produce temperature jumps for electrophysiology.
    Pennell T; Suchyna T; Wang J; Heo J; Felske JD; Sachs F; Hua SZ
    Anal Chem; 2008 Apr; 80(7):2447-51. PubMed ID: 18302344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser cladding of bioactive glass coatings.
    Comesaña R; Quintero F; Lusquiños F; Pascual MJ; Boutinguiza M; Durán A; Pou J
    Acta Biomater; 2010 Mar; 6(3):953-61. PubMed ID: 19671459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass.
    Hanada Y; Sugioka K; Kawano H; Ishikawa IS; Miyawaki A; Midorikawa K
    Biomed Microdevices; 2008 Jun; 10(3):403-10. PubMed ID: 18080201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanointerstice-driven microflow.
    Chung S; Yun H; Kamm RD
    Small; 2009 Mar; 5(5):609-13. PubMed ID: 19226594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustophoresis in wet-etched glass chips.
    Evander M; Lenshof A; Laurell T; Nilsson J
    Anal Chem; 2008 Jul; 80(13):5178-85. PubMed ID: 18489126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrodynamically tunable optofluidic cylindrical microlens.
    Mao X; Waldeisen JR; Juluri BK; Huang TJ
    Lab Chip; 2007 Oct; 7(10):1303-8. PubMed ID: 17896014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.
    Kim SM; Burns MA; Hasselbrink EF
    Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real time PCR on disposable PDMS chip with a miniaturized thermal cycler.
    Xiang Q; Xu B; Fu R; Li D
    Biomed Microdevices; 2005 Dec; 7(4):273-9. PubMed ID: 16404505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water-assisted femtosecond laser machining of electrospray nozzles on glass microfluidic devices.
    An R; Hoffman MD; Donoghue MA; Hunt AJ; Jacobson SC
    Opt Express; 2008 Sep; 16(19):15206-11. PubMed ID: 18795059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The autofluorescence of plastic materials and chips measured under laser irradiation.
    Piruska A; Nikcevic I; Lee SH; Ahn C; Heineman WR; Limbach PA; Seliskar CJ
    Lab Chip; 2005 Dec; 5(12):1348-54. PubMed ID: 16286964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extraction of plasma from whole blood using a deposited microbead plug (DMBP) in a capillary-driven microfluidic device.
    Li C; Liu C; Xu Z; Li J
    Biomed Microdevices; 2012 Jun; 14(3):565-72. PubMed ID: 22426924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.