These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19830686)

  • 41. Optimizing Periplasmic Expression in Escherichia coli for the Production of Recombinant Proteins Tagged with the Small Metal-Binding Protein SmbP.
    Santos BD; Morones-Ramirez JR; Balderas-Renteria I; Casillas-Vega NG; Galbraith DW; Zarate X
    Mol Biotechnol; 2019 Jun; 61(6):451-460. PubMed ID: 30997666
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Bacillus subtilis TatAdCd system exhibits an extreme level of substrate selectivity.
    Frain KM; Jones AS; Schoner R; Walker KL; Robinson C
    Biochim Biophys Acta Mol Cell Res; 2017 Jan; 1864(1):202-208. PubMed ID: 27984091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo dissection of the Tat translocation pathway in Escherichia coli.
    Ize B; Gérard F; Zhang M; Chanal A; Voulhoux R; Palmer T; Filloux A; Wu LF
    J Mol Biol; 2002 Mar; 317(3):327-35. PubMed ID: 11922668
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanistic Aspects of Folded Protein Transport by the Twin Arginine Translocase (Tat).
    Cline K
    J Biol Chem; 2015 Jul; 290(27):16530-8. PubMed ID: 25975269
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impairment of twin-arginine-dependent export by seemingly small alterations of substrate conformation.
    Maurer C; Panahandeh S; Moser M; Müller M
    FEBS Lett; 2009 Sep; 583(17):2849-53. PubMed ID: 19631648
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic toggling of alkaline phosphatase folding reveals signal peptides for all major modes of transport across the inner membrane of bacteria.
    Marrichi M; Camacho L; Russell DG; DeLisa MP
    J Biol Chem; 2008 Dec; 283(50):35223-35. PubMed ID: 18819916
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Tat system proofreads FeS protein substrates and directly initiates the disposal of rejected molecules.
    Matos CF; Robinson C; Di Cola A
    EMBO J; 2008 Aug; 27(15):2055-63. PubMed ID: 18615097
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Malfolded recombinant Tat substrates are Tat-independently degraded in Escherichia coli.
    Lindenstrauss U; Matos CF; Graubner W; Robinson C; Brüser T
    FEBS Lett; 2010 Aug; 584(16):3644-8. PubMed ID: 20659466
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel phenotypes of Escherichia coli tat mutants revealed by global gene expression and phenotypic analysis.
    Ize B; Porcelli I; Lucchini S; Hinton JC; Berks BC; Palmer T
    J Biol Chem; 2004 Nov; 279(46):47543-54. PubMed ID: 15347649
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Versatile selection technology for intracellular protein-protein interactions mediated by a unique bacterial hitchhiker transport mechanism.
    Waraho D; DeLisa MP
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3692-7. PubMed ID: 19234130
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression.
    Dyson MR; Shadbolt SP; Vincent KJ; Perera RL; McCafferty J
    BMC Biotechnol; 2004 Dec; 4():32. PubMed ID: 15598350
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural features of the TatC membrane protein that determine docking and insertion of a twin-arginine signal peptide.
    Blümmel AS; Drepper F; Knapp B; Eimer E; Warscheid B; Müller M; Fröbel J
    J Biol Chem; 2017 Dec; 292(52):21320-21329. PubMed ID: 29089385
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Specificity of signal peptide recognition in tat-dependent bacterial protein translocation.
    Blaudeck N; Sprenger GA; Freudl R; Wiegert T
    J Bacteriol; 2001 Jan; 183(2):604-10. PubMed ID: 11133954
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface-exposed domains of TatB involved in the structural and functional assembly of the Tat translocase in
    Fröbel J; Blümmel AS; Drepper F; Warscheid B; Müller M
    J Biol Chem; 2019 Sep; 294(38):13902-13914. PubMed ID: 31341014
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High Throughput Screen for Escherichia coli Twin Arginine Translocation (Tat) Inhibitors.
    Bageshwar UK; VerPlank L; Baker D; Dong W; Hamsanathan S; Whitaker N; Sacchettini JC; Musser SM
    PLoS One; 2016; 11(2):e0149659. PubMed ID: 26901445
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Escherichia coli "TatExpress" strains export several g/L human growth hormone to the periplasm by the Tat pathway.
    Guerrero Montero I; Richards KL; Jawara C; Browning DF; Peswani AR; Labrit M; Allen M; Aubry C; Davé E; Humphreys DP; Busby SJW; Robinson C
    Biotechnol Bioeng; 2019 Dec; 116(12):3282-3291. PubMed ID: 31429928
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Moving folded proteins across the bacterial cell membrane.
    Palmer T; Berks BC
    Microbiology (Reading); 2003 Mar; 149(Pt 3):547-556. PubMed ID: 12634324
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Tat system of Gram-positive bacteria.
    Goosens VJ; Monteferrante CG; van Dijl JM
    Biochim Biophys Acta; 2014 Aug; 1843(8):1698-706. PubMed ID: 24140208
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Export of Thermus thermophilus alkaline phosphatase via the twin-arginine translocation pathway in Escherichia coli.
    Angelini S; Moreno R; Gouffi K; Santini C; Yamagishi A; Berenguer J; Wu L
    FEBS Lett; 2001 Oct; 506(2):103-7. PubMed ID: 11591380
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A putative twin-arginine translocation system in the phytopathogenic bacterium Xylella fastidiosa.
    Ciapina LP; Picchi SC; Lacroix JM; Lemos EG; Ödberg-Ferragut C
    Can J Microbiol; 2011 Feb; 57(2):149-54. PubMed ID: 21326357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.