These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19830773)

  • 1. Rapid prediction of the hydrogen bond cooperativity in N-methylacetamide chains.
    Jiang XN; Wang CS
    Chemphyschem; 2009 Dec; 10(18):3330-6. PubMed ID: 19830773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A scheme for rapid prediction of cooperativity in hydrogen bond chains of formamides, acetamides, and N-methylformamides.
    Jiang XN; Sun CL; Wang CS
    J Comput Chem; 2010 May; 31(7):1410-20. PubMed ID: 19885870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analytic potential energy function for the amide-amide and amide-water intermolecular hydrogen bonds in peptides.
    Sun CL; Jiang XN; Wang CS
    J Comput Chem; 2009 Nov; 30(15):2567-75. PubMed ID: 19373825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of N-methylacetamide in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.
    Yang ZZ; Qian P
    J Chem Phys; 2006 Aug; 125(6):64311. PubMed ID: 16942290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation on the intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies in glycine and alanine peptides.
    Zhang Y; Wang CS
    J Comput Chem; 2009 Jun; 30(8):1251-60. PubMed ID: 18991303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid evaluation of the binding energies between peptide amide and DNA base.
    Li Y; Wang CS
    J Comput Chem; 2011 Oct; 32(13):2765-73. PubMed ID: 21710636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid evaluation of the binding energies in hydrogen-bonded amide-thymine and amide-uracil dimers in gas phase.
    Li Y; Jiang XN; Wang CS
    J Comput Chem; 2011 Apr; 32(5):953-66. PubMed ID: 20949514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio study of hydrogen-bond formation between cyclic ethers and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2006 Dec; 110(51):13923-32. PubMed ID: 17181352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and hydrogen bonding in neat N-methylacetamide: classical molecular dynamics and Raman spectroscopy studies of a liquid of peptidic fragments.
    Whitfield TW; Martyna GJ; Allison S; Bates SP; Vass H; Crain J
    J Phys Chem B; 2006 Mar; 110(8):3624-37. PubMed ID: 16494418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of the interplay between lithium bond and hydrogen bond in complexes involved with HLi and HCN.
    Li Q; Hu T; An X; Li W; Cheng J; Gong B; Sun J
    Chemphyschem; 2009 Dec; 10(18):3310-5. PubMed ID: 19830767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical study on structural, spectroscopic and energetic properties of acetamide clusters [CH3CONH2] (n=1-15).
    Mahadevi AS; Neela YI; Sastry GN
    Phys Chem Chem Phys; 2011 Sep; 13(33):15211-20. PubMed ID: 21761038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluoroolefins as peptide mimetics: a computational study of structure, charge distribution, hydration, and hydrogen bonding.
    Urban JJ; Tillman BG; Cronin WA
    J Phys Chem A; 2006 Sep; 110(38):11120-9. PubMed ID: 16986846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperativity in hydrogen-bonded interactions: ab initio and "atoms in molecules" analyses.
    Ziółkowski M; Grabowski SJ; Leszczynski J
    J Phys Chem A; 2006 May; 110(20):6514-21. PubMed ID: 16706409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling competitive interactions in proteins: vibrational spectroscopy of M+(n-methylacetamide)1(H2O)n=0-3, M=Na and K, in the 3 microm region.
    Miller DJ; Lisy JM
    J Phys Chem A; 2007 Dec; 111(49):12409-16. PubMed ID: 17696509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of a dual hydrogen bond in the N-H...C=O moiety in the indole-(N-methylacetamide)1 cluster revealed by IR-dip spectroscopy with natural bond orbital analysis.
    Sakota K; Shimazaki Y; Sekiya H
    J Chem Phys; 2009 Jun; 130(23):231105. PubMed ID: 19548704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative effect in hydrogen bonding of N-methylacetamide in carbon tetrachloride solution confirmed by NMR and IR spectroscopies.
    Akiyama M; Torii H
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Jan; 56A(1):137-44. PubMed ID: 10728864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The -BF-NH- link as a peptide-bond surrogate.
    Mathieu S; Trinquier G
    J Phys Chem B; 2012 Aug; 116(30):8863-72. PubMed ID: 22794798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new scheme for determining the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies of glycine and alanine peptides.
    Wang CS; Zhang Y; Gao K; Yang ZZ
    J Chem Phys; 2005 Jul; 123(2):24307. PubMed ID: 16050745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.