These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19830831)

  • 1. Quantifying the evolutionary divergence of protein structures: the role of function change and function conservation.
    Pascual-García A; Abia D; Méndez R; Nido GS; Bastolla U
    Proteins; 2010 Jan; 78(1):181-96. PubMed ID: 19830831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural divergence and distant relationships in proteins: evolution of the globins.
    Lecomte JT; Vuletich DA; Lesk AM
    Curr Opin Struct Biol; 2005 Jun; 15(3):290-301. PubMed ID: 15922591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores.
    Wilson CA; Kreychman J; Gerstein M
    J Mol Biol; 2000 Mar; 297(1):233-49. PubMed ID: 10704319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quaternary structure constraints on evolutionary sequence divergence.
    Fornasari MS; Parisi G; Echave J
    Mol Biol Evol; 2007 Feb; 24(2):349-51. PubMed ID: 17124181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fold change in evolution of protein structures.
    Grishin NV
    J Struct Biol; 2001; 134(2-3):167-85. PubMed ID: 11551177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of function in protein superfamilies, from a structural perspective.
    Todd AE; Orengo CA; Thornton JM
    J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterotachy and functional shift in protein evolution.
    Philippe H; Casane D; Gribaldo S; Lopez P; Meunier J
    IUBMB Life; 2003; 55(4-5):257-65. PubMed ID: 12880207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural clusters of evolutionary trace residues are statistically significant and common in proteins.
    Madabushi S; Yao H; Marsh M; Kristensen DM; Philippi A; Sowa ME; Lichtarge O
    J Mol Biol; 2002 Feb; 316(1):139-54. PubMed ID: 11829509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of homology in protein structure classification.
    Dietmann S; Holm L
    Nat Struct Biol; 2001 Nov; 8(11):953-7. PubMed ID: 11685241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface map comparison: studying function diversity of homologous proteins.
    Pawlowski K; Godzik A
    J Mol Biol; 2001 Jun; 309(3):793-806. PubMed ID: 11397097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. indel-Seq-Gen: a new protein family simulator incorporating domains, motifs, and indels.
    Strope CL; Scott SD; Moriyama EN
    Mol Biol Evol; 2007 Mar; 24(3):640-9. PubMed ID: 17158778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evolutionary trace method defines binding surfaces common to protein families.
    Lichtarge O; Bourne HR; Cohen FE
    J Mol Biol; 1996 Mar; 257(2):342-58. PubMed ID: 8609628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of protein sequences and structures.
    Wood TC; Pearson WR
    J Mol Biol; 1999 Aug; 291(4):977-95. PubMed ID: 10452901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the structures of globins and phycocyanins: evidence for evolutionary relationship.
    Pastore A; Lesk AM
    Proteins; 1990; 8(2):133-55. PubMed ID: 2235993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional restraints in the evolution of protein families and superfamilies.
    Gong S; Worth CL; Bickerton GR; Lee S; Tanramluk D; Blundell TL
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):727-33. PubMed ID: 19614584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical origins of protein superfamilies.
    Zeldovich KB; Berezovsky IN; Shakhnovich EI
    J Mol Biol; 2006 Apr; 357(4):1335-43. PubMed ID: 16483605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly constrained proteins contain an unexpectedly large number of amino acid tandem repeats.
    Mularoni L; Veitia RA; Albà MM
    Genomics; 2007 Mar; 89(3):316-25. PubMed ID: 17196365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connectivity of neutral networks, overdispersion, and structural conservation in protein evolution.
    Bastolla U; Porto M; Eduardo Roman MH; Vendruscolo MH
    J Mol Evol; 2003 Mar; 56(3):243-54. PubMed ID: 12612828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring evolution of fish proteins: the globin case study.
    Dettaï A; di Prisco G; Lecointre G; Parisi E; Verde C
    Methods Enzymol; 2008; 436():539-70. PubMed ID: 18237653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of selection on the evolutionary distance estimated from the base changes observed between homologous nucleotide sequences.
    Otsuka J; Kawai Y; Sugaya N
    J Theor Biol; 2001 Nov; 213(2):129-44. PubMed ID: 11894986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.