These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19831074)

  • 1. Riparian bird response to vegetation structure: a multiscale analysis using LiDAR measurements of canopy height.
    Seavy NE; Viers JH; Wood JK
    Ecol Appl; 2009 Oct; 19(7):1848-57. PubMed ID: 19831074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking stream flow and groundwater to avian habitat in a desert riparian system.
    Merritt DM; Bateman HL
    Ecol Appl; 2012 Oct; 22(7):1973-88. PubMed ID: 23210313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the influence of topography and canopy structure on Douglas fir throughfall with LiDAR and empirical data in the Santa Cruz mountains, USA.
    Griffith KT; Ponette-González AG; Curran LM; Weathers KC
    Environ Monit Assess; 2015 May; 187(5):270. PubMed ID: 25893759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of vegetation structure on lidar-derived canopy height and fractional cover in forested riparian buffers during leaf-off and leaf-on conditions.
    Wasser L; Day R; Chasmer L; Taylor A
    PLoS One; 2013; 8(1):e54776. PubMed ID: 23382966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird.
    Goetz SJ; Steinberg D; Betts MG; Holmes RT; Doran PJ; Dubayah R; Hofton M
    Ecology; 2010 Jun; 91(6):1569-76. PubMed ID: 20583698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of standardized visual assessments of riparian and stream condition to manage riparian bird habitat in eastern Oregon.
    Cooke HA; Zack S
    Environ Manage; 2009 Jul; 44(1):173-84. PubMed ID: 18574622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of habitat disturbance from residential development on breeding bird communities in riparian corridors.
    Lussier SM; Enser RW; Dasilva SN; Charpentier M
    Environ Manage; 2006 Sep; 38(3):504-21. PubMed ID: 16738815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximizing benefits from riparian revegetation efforts: local- and landscape-level determinants of avian response.
    Gardali T; Holmes AL
    Environ Manage; 2011 Jul; 48(1):28-37. PubMed ID: 21590443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of vegetation height heterogeneity on forest and woodland bird species richness across the United States.
    Huang Q; Swatantran A; Dubayah R; Goetz SJ
    PLoS One; 2014; 9(8):e103236. PubMed ID: 25101782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using satellite and airborne LiDAR to model woodpecker habitat occupancy at the landscape scale.
    Vierling LA; Vierling KT; Adam P; Hudak AT
    PLoS One; 2013; 8(12):e80988. PubMed ID: 24324655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function.
    Antonarakis AS; Saatchi SS; Chazdon RL; Moorcroft PR
    Ecol Appl; 2011 Jun; 21(4):1120-37. PubMed ID: 21774418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vegetation structure from LiDAR explains the local richness of birds across Denmark.
    Davison CW; Assmann JJ; Normand S; Rahbek C; Morueta-Holme N
    J Anim Ecol; 2023 Jul; 92(7):1332-1344. PubMed ID: 37269186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of lidar to assess the habitat selection of an endangered small mammal in an estuarine wetland environment.
    Hagani JS; Takekawa JY; Skalos SM; Casazza ML; Riley MK; Estrella SA; Barthman-Thompson LM; Smith KR; Buffington KJ; Thorne KM
    Ecol Evol; 2024 Feb; 14(2):e10894. PubMed ID: 38314315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving representation of riparian vegetation shading in a regional stream temperature model using LiDAR data.
    Loicq P; Moatar F; Jullian Y; Dugdale SJ; Hannah DM
    Sci Total Environ; 2018 May; 624():480-490. PubMed ID: 29268220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping migratory bird prevalence using remote sensing data fusion.
    Swatantran A; Dubayah R; Goetz S; Hofton M; Betts MG; Sun M; Simard M; Holmes R
    PLoS One; 2012; 7(1):e28922. PubMed ID: 22235254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal and Spatial Scales Matter: Circannual Habitat Selection by Bird Communities in Vineyards.
    Guyot C; Arlettaz R; Korner P; Jacot A
    PLoS One; 2017; 12(2):e0170176. PubMed ID: 28146570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.
    Gillan JK; Karl JW; Duniway M; Elaksher A
    J Environ Manage; 2014 Nov; 144():226-35. PubMed ID: 24973611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple-region, N-mixture community model to assess associations of riparian area, fragmentation, and species richness.
    Fogarty FA; Yen JDL; Fleishman E; Sollmann R; Ke A
    Ecol Appl; 2022 Dec; 32(8):e2698. PubMed ID: 35748488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The long shadow of woody encroachment: An integrated approach to modeling grassland songbird habitat.
    Silber KM; Hefley TJ; Castro-Miller HN; Ratajczak Z; Boyle WA
    Ecol Appl; 2024 Apr; 34(3):e2954. PubMed ID: 38379458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.