BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1983129)

  • 1. [Effects of submarine engine room steady noise on the compound action potential tuning curves and its relation to cochlear pathology in guinea pigs].
    Pei H
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1990 Jun; 25(3):147-9, 190. PubMed ID: 1983129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Relation between changes in compound action potential tuning curves and the pathology of cochlear hair cells stereocilia].
    Han D
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1991; 26(6):340-3, 382. PubMed ID: 1811689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Evaluation of compound action potential tuning curves from normal guinea pig cochleas].
    Han D
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1992; 27(1):17-20, 60-1. PubMed ID: 1591036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency tuning curves derived from auditory steady state evoked potentials: a proof-of-concept study.
    Markessis E; Poncelet L; Colin C; Coppens A; Hoonhorst I; Kadhim H; Deltenre P
    Ear Hear; 2009 Feb; 30(1):43-53. PubMed ID: 19125026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Correlation of changes in compound action potential (CAP) tuning curves and cochlear lesion in guinea pigs after explosion].
    Han D
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1989; 24(2):66-9, 126. PubMed ID: 2701993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic changes in hair cell stereocilia and cochlear transduction after noise exposure.
    Wang H; Yin S; Yu Z; Huang Y; Wang J
    Biochem Biophys Res Commun; 2011 Jun; 409(4):616-21. PubMed ID: 21616058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prophylactic effect of Ca2+ -deficient artificial perilymph perfusion on noise-induced hearing loss.
    Li X; Yu N; Sun J; Zhao L
    Chin Med J (Engl); 2003 Mar; 116(3):440-3. PubMed ID: 12781055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of acoustic trauma on the tectorial membrane, stereocilia, and hearing sensitivity: possible mechanisms underlying damage, recovery, and protection.
    Canlon B
    Scand Audiol Suppl; 1988; 27():1-45. PubMed ID: 3043645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Abnormal augmentation of the evoked potential and morphological changes of guinea pig cochlea induced by cisplatin].
    Li X; Sun W; Yu N
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1998 Aug; 33(4):199-202. PubMed ID: 11717881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss.
    Kopke RD; Coleman JK; Liu J; Campbell KC; Riffenburgh RH
    Laryngoscope; 2002 Sep; 112(9):1515-32. PubMed ID: 12352659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Damage to cochleae in newborn guinea pigs by 80dB white noise].
    Du X
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1990 Jun; 25(3):153-5, 190. PubMed ID: 2100538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of glucocorticoid receptor antagonist on CAPs threshold shift due to short-term sound exposure in guinea pigs.
    Mori T; Fujimura K; Yoshida M; Suzuki H
    Auris Nasus Larynx; 2004 Dec; 31(4):395-9. PubMed ID: 15571913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Early and late reaction of the guinea pig cochlea to impulse noise].
    Meyer C; Biedermann M; Christner A
    Anat Anz; 1985; 158(1):5-12. PubMed ID: 3993966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intense noise-induced apoptosis in hair cells of guinea pig cochleae.
    Hu BH; Guo W; Wang PY; Henderson D; Jiang SC
    Acta Otolaryngol; 2000 Jan; 120(1):19-24. PubMed ID: 10779180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The experimental study of the anti-damage effect of iminoethyl-lysine on noise-induced cochlea damage in guinea pig].
    Xiong M; Su J; Wang J; He Q; Deng H; You J
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2002 Oct; 20(5):356-8. PubMed ID: 14694725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine alterations of distortion-product otoacoustic emissions after moderate acoustic overexposure in guinea pigs.
    Kossowski M; Mom T; Guitton M; Poncet JL; Bonfils P; Avan P
    Audiology; 2001; 40(3):113-22. PubMed ID: 11465293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Temporal cochlear changes evoked by prolonged exposure to low intensity noise. Electrophysiological study in guinea pigs].
    Benítez LD
    Arch Invest Med (Mex); 1976; 7(2):61-70. PubMed ID: 949197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of a cochlear injury model using bone-conducted ultrasound irradiation in guinea pigs and investigation on peripheral coding and recognition of ultrasonic signals.
    Wang F; Cao C; Huang C; Li Q; Li T; Liu X; Zhang S; Ceng X; Wang C
    Cell Mol Biol (Noisy-le-grand); 2018 Sep; 64(12):2-10. PubMed ID: 30301494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Threshold shift and inner ear pathology in guinea pigs exposed to octave bands of noise at 63 Hz and 4 kHz].
    Wang L
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1990 Oct; 25(5):277-80, 318. PubMed ID: 2076336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hearing shift and inner ear pathology of guinea pigs exposed to octave bands of noise centered at 63 Hz and 4 kHz.
    Wang L; Jiang W; Qian J
    Chin Med J (Engl); 1994 Jul; 107(7):500-4. PubMed ID: 7956496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.