These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

589 related articles for article (PubMed ID: 19831385)

  • 1. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals.
    Li J; Schachermeyer S; Wang Y; Yin Y; Zhong W
    Anal Chem; 2009 Dec; 81(23):9723-9. PubMed ID: 19831385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioluminescence-based detection of microRNA, miR21 in breast cancer cells.
    Cissell KA; Rahimi Y; Shrestha S; Hunt EA; Deo SK
    Anal Chem; 2008 Apr; 80(7):2319-25. PubMed ID: 18302417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence signal amplification by cation exchange in ionic nanocrystals.
    Li J; Zhang T; Ge J; Yin Y; Zhong W
    Angew Chem Int Ed Engl; 2009; 48(9):1588-91. PubMed ID: 19165850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes.
    Castoldi M; Schmidt S; Benes V; Hentze MW; Muckenthaler MU
    Nat Protoc; 2008; 3(2):321-9. PubMed ID: 18274534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single-molecule method for the quantitation of microRNA gene expression.
    Neely LA; Patel S; Garver J; Gallo M; Hackett M; McLaughlin S; Nadel M; Harris J; Gullans S; Rooke J
    Nat Methods; 2006 Jan; 3(1):41-6. PubMed ID: 16369552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct quantification of single-molecules of microRNA by total internal reflection fluorescence microscopy.
    Chan HM; Chan LS; Wong RN; Li HW
    Anal Chem; 2010 Aug; 82(16):6911-8. PubMed ID: 20704380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel fluorescent and electrochemical dual-responsive immunosensor for sensitive and reliable detection of biomarkers based on cation-exchange reaction.
    Zhao Y; Cai X; Zhu C; Yang H; Du D
    Anal Chim Acta; 2020 Feb; 1096():61-68. PubMed ID: 31883592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of the mature, but not precursor, RNA using a fluorescent DNA probe.
    Paiboonskuwong K; Kato Y
    Nucleic Acids Symp Ser (Oxf); 2006; (50):327-8. PubMed ID: 17150950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attomolar ultrasensitive microRNA detection by DNA-scaffolded silver-nanocluster probe based on isothermal amplification.
    Liu YQ; Zhang M; Yin BC; Ye BC
    Anal Chem; 2012 Jun; 84(12):5165-9. PubMed ID: 22655700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA expression profiling using microarrays.
    Liu CG; Calin GA; Volinia S; Croce CM
    Nat Protoc; 2008; 3(4):563-78. PubMed ID: 18388938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time polymerase chain reaction microRNA detection based on enzymatic stem-loop probes ligation.
    Li J; Yao B; Huang H; Wang Z; Sun C; Fan Y; Chang Q; Li S; Wang X; Xi J
    Anal Chem; 2009 Jul; 81(13):5446-51. PubMed ID: 19469541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical detection of microRNAs via gap hybridization assay.
    Pöhlmann C; Sprinzl M
    Anal Chem; 2010 Jun; 82(11):4434-40. PubMed ID: 20433153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient fluorescent method for selective detection of mature miRNA species.
    Kato Y
    Nucleic Acids Symp Ser (Oxf); 2008; (52):71-2. PubMed ID: 18776258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and application of L-cysteine-modified CdSe/CdS core/shell nanocrystals as a novel fluorescence probe for detection of nucleic acid.
    Huang F; Chen G
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):318-23. PubMed ID: 17954036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence hydrogel array based on interfacial cation exchange amplification for highly sensitive microRNA detection.
    Wu L; Wang Y; He R; Zhang Y; He Y; Wang C; Lu Z; Liu Y; Ju H
    Anal Chim Acta; 2019 Nov; 1080():206-214. PubMed ID: 31409471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical based detection of microRNA, mir21 in breast cancer cells.
    Kilic T; Topkaya SN; Ozkan Ariksoysal D; Ozsoz M; Ballar P; Erac Y; Gozen O
    Biosens Bioelectron; 2012; 38(1):195-201. PubMed ID: 22776181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-specific detection of MicroRNAs by signal-amplifying ribozymes.
    Hartig JS; Grüne I; Najafi-Shoushtari SH; Famulok M
    J Am Chem Soc; 2004 Jan; 126(3):722-3. PubMed ID: 14733539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of MicroRNAs using target-guided formation of conducting polymer nanowires in nanogaps.
    Fan Y; Chen X; Trigg AD; Tung CH; Kong J; Gao Z
    J Am Chem Soc; 2007 May; 129(17):5437-43. PubMed ID: 17411036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exponential amplification for chemiluminescence resonance energy transfer detection of microRNA in real samples based on a cross-catalyst strand-displacement network.
    Bi S; Zhang J; Hao S; Ding C; Zhang S
    Anal Chem; 2011 May; 83(10):3696-702. PubMed ID: 21446757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target-triggered three-way junction structure and polymerase/nicking enzyme synergetic isothermal quadratic DNA machine for highly specific, one-step, and rapid microRNA detection at attomolar level.
    Zhang Q; Chen F; Xu F; Zhao Y; Fan C
    Anal Chem; 2014 Aug; 86(16):8098-105. PubMed ID: 25072308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.