BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 19831476)

  • 1. Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling.
    Valentín A; Humphrey JD
    J Biomech Eng; 2009 Oct; 131(10):101006. PubMed ID: 19831476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A constrained mixture model for arterial adaptations to a sustained step change in blood flow.
    Humphrey JD; Rajagopal KR
    Biomech Model Mechanobiol; 2003 Nov; 2(2):109-26. PubMed ID: 14586812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure.
    Valentín A; Cardamone L; Baek S; Humphrey JD
    J R Soc Interface; 2009 Mar; 6(32):293-306. PubMed ID: 18647735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 2D constrained mixture model for arterial adaptations to large changes in flow, pressure and axial stretch.
    Gleason RL; Humphrey JD
    Math Med Biol; 2005 Dec; 22(4):347-69. PubMed ID: 16319121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling effects of axial extension on arterial growth and remodeling.
    Valentín A; Humphrey JD
    Med Biol Eng Comput; 2009 Sep; 47(9):979-87. PubMed ID: 19649667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of a sustained extension on arterial growth and remodeling: a theoretical study.
    Gleason RL; Humphrey JD
    J Biomech; 2005 Jun; 38(6):1255-61. PubMed ID: 15863110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aortic pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses.
    Nguyen PH; Tuzun E; Quick CM
    Am J Physiol Regul Integr Comp Physiol; 2016 Sep; 311(3):R522-31. PubMed ID: 27306830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle.
    Cardamone L; Valentín A; Eberth JF; Humphrey JD
    Math Med Biol; 2010 Dec; 27(4):343-71. PubMed ID: 20484365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 2-D model of flow-induced alterations in the geometry, structure, and properties of carotid arteries.
    Gleason RL; Taber LA; Humphrey JD
    J Biomech Eng; 2004 Jun; 126(3):371-81. PubMed ID: 15341175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arteries respond to independent control of circumferential and shear stress in organ culture.
    Wayman BH; Taylor WR; Rachev A; Vito RP
    Ann Biomed Eng; 2008 May; 36(5):673-84. PubMed ID: 18228146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced Smooth Muscle Contractile Capacity Facilitates Maladaptive Arterial Remodeling.
    Eberth JF; Humphrey JD
    J Biomech Eng; 2022 Apr; 144(4):. PubMed ID: 34729580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3-D constrained mixture model for mechanically mediated vascular growth and remodeling.
    Wan W; Hansen L; Gleason RL
    Biomech Model Mechanobiol; 2010 Aug; 9(4):403-19. PubMed ID: 20039091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A potential role of smooth muscle tone in early hypertension: a theoretical study.
    Humphrey JD; Wilson E
    J Biomech; 2003 Nov; 36(11):1595-601. PubMed ID: 14522200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structure-based model of arterial remodeling in response to sustained hypertension.
    Tsamis A; Stergiopulos N; Rachev A
    J Biomech Eng; 2009 Oct; 131(10):101004. PubMed ID: 19831474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents.
    Alford PW; Humphrey JD; Taber LA
    Biomech Model Mechanobiol; 2008 Aug; 7(4):245-62. PubMed ID: 17786493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling of flow and wall behaviour in a mildly stenosed tube.
    Lee KW; Xu XY
    Med Eng Phys; 2002 Nov; 24(9):575-86. PubMed ID: 12376044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling.
    Valentín A; Humphrey JD
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1902):3585-606. PubMed ID: 19657012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational simulation of hemodynamic-driven growth and remodeling of embryonic atrioventricular valves.
    Buskohl PR; Jenkins JT; Butcher JT
    Biomech Model Mechanobiol; 2012 Nov; 11(8):1205-17. PubMed ID: 22869343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover.
    Gleason RL; Humphrey JD
    J Vasc Res; 2004; 41(4):352-63. PubMed ID: 15353893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.