BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19831485)

  • 1. Microstructurally motivated constitutive modeling of mouse arteries cultured under altered axial stretch.
    Hansen L; Wan W; Gleason RL
    J Biomech Eng; 2009 Oct; 131(10):101015. PubMed ID: 19831485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential mechanical response and microstructural organization between non-human primate femoral and carotid arteries.
    Wang R; Raykin J; Li H; Gleason RL; Brewster LP
    Biomech Model Mechanobiol; 2014 Oct; 13(5):1041-51. PubMed ID: 24532266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical and microstructural properties of common carotid arteries from fibulin-5 null mice.
    Wan W; Yanagisawa H; Gleason RL
    Ann Biomed Eng; 2010 Dec; 38(12):3605-17. PubMed ID: 20614245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microstructurally motivated model of the mechanical behavior of tissue engineered blood vessels.
    Dahl SL; Vaughn ME; Hu JJ; Driessen NJ; Baaijens FP; Humphrey JD; Niklason LE
    Ann Biomed Eng; 2008 Nov; 36(11):1782-92. PubMed ID: 18720007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructural quantification of collagen fiber orientations and its integration in constitutive modeling of the porcine carotid artery.
    Sáez P; García A; Peña E; Gasser TC; Martínez MA
    Acta Biomater; 2016 Mar; 33():183-93. PubMed ID: 26827780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of arterial wall mechanical behavior and stresses from human clinical data.
    Masson I; Boutouyrie P; Laurent S; Humphrey JD; Zidi M
    J Biomech; 2008 Aug; 41(12):2618-27. PubMed ID: 18684458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biaxial biomechanical adaptations of mouse carotid arteries cultured at altered axial extension.
    Gleason RL; Wilson E; Humphrey JD
    J Biomech; 2007; 40(4):766-76. PubMed ID: 16750537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microstructurally motivated model of arterial wall mechanics with mechanobiological implications.
    Bellini C; Ferruzzi J; Roccabianca S; Di Martino ES; Humphrey JD
    Ann Biomed Eng; 2014 Mar; 42(3):488-502. PubMed ID: 24197802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrix metalloproteinase-2 and -9 are associated with high stresses predicted using a nonlinear heterogeneous model of arteries.
    Kim YS; Galis ZS; Rachev A; Han HC; Vito RP
    J Biomech Eng; 2009 Jan; 131(1):011009. PubMed ID: 19045925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive modeling of mouse carotid arteries using experimentally measured microstructural parameters.
    Wan W; Dixon JB; Gleason RL
    Biophys J; 2012 Jun; 102(12):2916-25. PubMed ID: 22735542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive modeling of an electrospun tubular scaffold used for vascular tissue engineering.
    Hu JJ
    Biomech Model Mechanobiol; 2015 Aug; 14(4):897-913. PubMed ID: 25556011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microstructurally driven model for pulmonary artery tissue.
    Kao PH; Lammers SR; Tian L; Hunter K; Stenmark KR; Shandas R; Qi HJ
    J Biomech Eng; 2011 May; 133(5):051002. PubMed ID: 21599093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time course of carotid artery growth and remodeling in response to altered pulsatility.
    Eberth JF; Popovic N; Gresham VC; Wilson E; Humphrey JD
    Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H1875-83. PubMed ID: 20852047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretically-based experimental approach for identifying vascular constitutive relations.
    Humphrey JD; Strumpf RK; Yin FC
    Biorheology; 1989; 26(4):687-702. PubMed ID: 2611364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle.
    Cardamone L; Valentín A; Eberth JF; Humphrey JD
    Math Med Biol; 2010 Dec; 27(4):343-71. PubMed ID: 20484365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of elastin anisotropy in structural strain energy functions of arterial tissue.
    Rezakhaniha R; Fonck E; Genoud C; Stergiopulos N
    Biomech Model Mechanobiol; 2011 Jul; 10(4):599-611. PubMed ID: 21058025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of elastin degradation on carotid wall mechanics as assessed by a constituent-based biomechanical model.
    Fonck E; Prod'hom G; Roy S; Augsburger L; Rüfenacht DA; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2754-63. PubMed ID: 17237244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolving biaxial mechanical properties of mouse carotid arteries in hypertension.
    Eberth JF; Cardamone L; Humphrey JD
    J Biomech; 2011 Sep; 44(14):2532-7. PubMed ID: 21851943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biaxial active mechanical properties of the porcine primary renal artery.
    Zhou B; Rachev A; Shazly T
    J Mech Behav Biomed Mater; 2015 Aug; 48():28-37. PubMed ID: 25913605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A constitutive modeling interpretation of the relationship among carotid artery stiffness, blood pressure, and age in hypertensive subjects.
    Spronck B; Heusinkveld MH; Donders WP; de Lepper AG; Op't Roodt J; Kroon AA; Delhaas T; Reesink KD
    Am J Physiol Heart Circ Physiol; 2015 Mar; 308(6):H568-82. PubMed ID: 25539709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.