These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 19832939)
1. Association mapping of cadmium, copper and hydrogen peroxide tolerance of roots and translocation capacities of cadmium and copper in Arabidopsis thaliana. Tazib T; Kobayashi Y; Ikka T; Zhao CR; Iuchi S; Kobayashi M; Kimura K; Koyama H Physiol Plant; 2009 Nov; 137(3):235-48. PubMed ID: 19832939 [TBL] [Abstract][Full Text] [Related]
2. Quantitative trait loci controlling resistance to cadmium rhizotoxicity in two recombinant inbred populations of Arabidopsis thaliana are partially shared by those for hydrogen peroxide resistance. Tazib T; Ikka T; Kuroda K; Kobayashi Y; Kimura K; Koyama H Physiol Plant; 2009 Aug; 136(4):395-406. PubMed ID: 19470096 [TBL] [Abstract][Full Text] [Related]
3. Genes underlying quantitative variation in ecologically important traits: PIF4 (phytochrome interacting factor 4) is associated with variation in internode length, flowering time, and fruit set in Arabidopsis thaliana. Brock MT; Maloof JN; Weinig C Mol Ecol; 2010 Mar; 19(6):1187-99. PubMed ID: 20456226 [TBL] [Abstract][Full Text] [Related]
4. The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana. Gayomba SR; Jung HI; Yan J; Danku J; Rutzke MA; Bernal M; Krämer U; Kochian LV; Salt DE; Vatamaniuk OK Metallomics; 2013 Sep; 5(9):1262-75. PubMed ID: 23835944 [TBL] [Abstract][Full Text] [Related]
5. Comparative cDNA-AFLP analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea. Craciun AR; Courbot M; Bourgis F; Salis P; Saumitou-Laprade P; Verbruggen N J Exp Bot; 2006; 57(12):2967-83. PubMed ID: 16916885 [TBL] [Abstract][Full Text] [Related]
6. Cadmium uptake, translocation, and tolerance in AHA1OX Arabidopsis thaliana. Hou L; Shi W; Wei W; Shen H Biol Trace Elem Res; 2011 Feb; 139(2):228-40. PubMed ID: 20229360 [TBL] [Abstract][Full Text] [Related]
7. Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation. Filatov V; Dowdle J; Smirnoff N; Ford-Lloyd B; Newbury HJ; Macnair MR Mol Ecol; 2006 Sep; 15(10):3045-59. PubMed ID: 16911220 [TBL] [Abstract][Full Text] [Related]
8. The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping. Ehrenreich IM; Stafford PA; Purugganan MD Genetics; 2007 Jun; 176(2):1223-36. PubMed ID: 17435248 [TBL] [Abstract][Full Text] [Related]
9. Efficient regulation of copper homeostasis underlies accession-specific sensitivities to excess copper and cadmium in roots of Arabidopsis thaliana. Amaral Dos Reis R; Hendrix S; Mourato MP; Louro Martins L; Vangronsveld J; Cuypers A J Plant Physiol; 2021 Jun; 261():153434. PubMed ID: 34020275 [TBL] [Abstract][Full Text] [Related]
10. Diversity analysis of the response to Zn within the Arabidopsis thaliana species revealed a low contribution of Zn translocation to Zn tolerance and a new role for Zn in lateral root development. Richard O; Pineau C; Loubet S; Chalies C; Vile D; Marquès L; Berthomieu P Plant Cell Environ; 2011 Jul; 34(7):1065-78. PubMed ID: 21410476 [TBL] [Abstract][Full Text] [Related]
11. [Identification of drought tolerant germplasm and inheritance and QTL mapping of related root traits in soybean (Glycine max (L.) Merr.)]. Liu Y; Gai JY; Lü HN; Wang YJ; Chen SY Yi Chuan Xue Bao; 2005 Aug; 32(8):855-63. PubMed ID: 16231741 [TBL] [Abstract][Full Text] [Related]
12. Natural genetic variation in whole-genome expression in Arabidopsis thaliana: the impact of physiological QTL introgression. Juenger TE; Wayne T; Boles S; Symonds VV; McKay J; Coughlan SJ Mol Ecol; 2006 Apr; 15(5):1351-65. PubMed ID: 16626458 [TBL] [Abstract][Full Text] [Related]
13. Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Guo J; Dai X; Xu W; Ma M Chemosphere; 2008 Jul; 72(7):1020-6. PubMed ID: 18504054 [TBL] [Abstract][Full Text] [Related]
14. Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L. Korenkov V; King B; Hirschi K; Wagner GJ Plant Biotechnol J; 2009 Apr; 7(3):219-26. PubMed ID: 19175521 [TBL] [Abstract][Full Text] [Related]
15. Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of Arabidopsis thaliana to drought. El-Soda M; Kruijer W; Malosetti M; Koornneef M; Aarts MG Plant Cell Environ; 2015 Mar; 38(3):585-99. PubMed ID: 25074022 [TBL] [Abstract][Full Text] [Related]
16. Sequence diversity and haplotype associations with phenotypic responses to crowding: GIGANTEA affects fruit set in Arabidopsis thaliana. Brock MT; Tiffin P; Weinig C Mol Ecol; 2007 Jul; 16(14):3050-62. PubMed ID: 17614917 [TBL] [Abstract][Full Text] [Related]
17. The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Andrés-Colás N; Sancenón V; Rodríguez-Navarro S; Mayo S; Thiele DJ; Ecker JR; Puig S; Peñarrubia L Plant J; 2006 Jan; 45(2):225-36. PubMed ID: 16367966 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. Verret F; Gravot A; Auroy P; Leonhardt N; David P; Nussaume L; Vavasseur A; Richaud P FEBS Lett; 2004 Oct; 576(3):306-12. PubMed ID: 15498553 [TBL] [Abstract][Full Text] [Related]
19. Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Maksymiec W; Wójcik M; Krupa Z Chemosphere; 2007 Jan; 66(3):421-7. PubMed ID: 16860844 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Herbette S; Taconnat L; Hugouvieux V; Piette L; Magniette ML; Cuine S; Auroy P; Richaud P; Forestier C; Bourguignon J; Renou JP; Vavasseur A; Leonhardt N Biochimie; 2006 Nov; 88(11):1751-65. PubMed ID: 16797112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]