BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 19833135)

  • 1. Protein interaction network analysis--approach for potential drug target identification in Mycobacterium tuberculosis.
    Kushwaha SK; Shakya M
    J Theor Biol; 2010 Jan; 262(2):284-94. PubMed ID: 19833135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis.
    Anishetty S; Pulimi M; Pennathur G
    Comput Biol Chem; 2005 Oct; 29(5):368-78. PubMed ID: 16213791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observing local and global properties of metabolic pathways: 'load points' and 'choke points' in the metabolic networks.
    Rahman SA; Schomburg D
    Bioinformatics; 2006 Jul; 22(14):1767-74. PubMed ID: 16682421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel inhibitor of indole-3-glycerol phosphate synthase with activity against multidrug-resistant Mycobacterium tuberculosis.
    Shen H; Wang F; Zhang Y; Huang Q; Xu S; Hu H; Yue J; Wang H
    FEBS J; 2009 Jan; 276(1):144-54. PubMed ID: 19032598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural genomics approach to drug discovery for Mycobacterium tuberculosis.
    Ioerger TR; Sacchettini JC
    Curr Opin Microbiol; 2009 Jun; 12(3):318-25. PubMed ID: 19481971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-iDT : tool for identification of drug target in bacteria and validation by Mycobacterium tuberculosis.
    Singh NK; Selvam SM; Chakravarthy P
    In Silico Biol; 2006; 6(6):485-93. PubMed ID: 17518759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global protein-protein interaction network in the human pathogen Mycobacterium tuberculosis H37Rv.
    Wang Y; Cui T; Zhang C; Yang M; Huang Y; Li W; Zhang L; Gao C; He Y; Li Y; Huang F; Zeng J; Huang C; Yang Q; Tian Y; Zhao C; Chen H; Zhang H; He ZG
    J Proteome Res; 2010 Dec; 9(12):6665-77. PubMed ID: 20973567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential non homologous protein targets of mycobacterium tuberculosis H37Rv identified from protein-protein interaction network.
    Melak T; Gakkhar S
    J Theor Biol; 2014 Nov; 361():152-8. PubMed ID: 25106794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for efficient disruption of metabolism in Mycobacterium tuberculosis from network analysis.
    Raman K; Vashisht R; Chandra N
    Mol Biosyst; 2009 Dec; 5(12):1740-51. PubMed ID: 19593474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparison of the proteomes of isoniazid-resistant Mycobacterium tuberculosis strains and isoniazid-susceptible strains].
    Jiang X; Gao F; Zhang WH; Hu ZY; Wang HH
    Zhonghua Jie He He Hu Xi Za Zhi; 2007 Jun; 30(6):427-31. PubMed ID: 17673015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the potential of intrinsically disordered proteins as drug targets: application to Mycobacterium tuberculosis.
    Anurag M; Dash D
    Mol Biosyst; 2009 Dec; 5(12):1752-7. PubMed ID: 19763328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis.
    Fakhar Z; Naiker S; Alves CN; Govender T; Maguire GE; Lameira J; Lamichhane G; Kruger HG; Honarparvar B
    J Biomol Struct Dyn; 2016 Nov; 34(11):2399-417. PubMed ID: 26612108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of potential drug targets in Yersinia pestis using metabolic pathway analysis: MurE ligase as a case study.
    Sharma A; Pan A
    Eur J Med Chem; 2012 Nov; 57():185-95. PubMed ID: 23059547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential genome analyses of metabolic enzymes in Pseudomonas aeruginosa for drug target identification.
    Perumal D; Lim CS; Sakharkar KR; Sakharkar MK
    In Silico Biol; 2007; 7(4-5):453-65. PubMed ID: 18391237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fishing the target of antitubercular compounds: in silico target deconvolution model development and validation.
    Prathipati P; Ma NL; Manjunatha UH; Bender A
    J Proteome Res; 2009 Jun; 8(6):2788-98. PubMed ID: 19301903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets.
    Singh VK; Ghosh I
    Theor Biol Med Model; 2006 Aug; 3():27. PubMed ID: 16887020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of anthranilate synthase component I (TrpE) from Mycobacterium tuberculosis H37Rv.
    Lin X; Xu S; Yang Y; Wu J; Wang H; Shen H; Wang H
    Protein Expr Purif; 2009 Mar; 64(1):8-15. PubMed ID: 18952181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based design of a novel class of potent inhibitors of InhA, the enoyl acyl carrier protein reductase from Mycobacterium tuberculosis: a computer modelling approach.
    Subba Rao G; Vijayakrishnan R; Kumar M
    Chem Biol Drug Des; 2008 Nov; 72(5):444-9. PubMed ID: 19012578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.