These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19833136)

  • 41. Molecular dynamics simulations of protein unfolding and limited refolding: characterization of partially unfolded states of ubiquitin in 60% methanol and in water.
    Alonso DO; Daggett V
    J Mol Biol; 1995 Mar; 247(3):501-20. PubMed ID: 7714903
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular mechanisms for cooperative folding of proteins.
    Hao MH; Scheraga HA
    J Mol Biol; 1998 Apr; 277(4):973-83. PubMed ID: 9545385
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of main-chain electrostatics, hydrophobic effect and side-chain conformational entropy in determining the secondary structure of proteins.
    Avbelj F; Fele L
    J Mol Biol; 1998 Jun; 279(3):665-84. PubMed ID: 9641985
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular dynamics simulations of folding processes of a beta-hairpin in an implicit solvent.
    Chen C; Xiao Y
    Phys Biol; 2006 Aug; 3(3):161-71. PubMed ID: 17021380
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction of protein local structures and folding fragments based on building-block library.
    Dong Q; Wang X; Lin L
    Proteins; 2008 Jul; 72(1):353-66. PubMed ID: 18214964
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pairwise energies for polypeptide coarse-grained models derived from atomic force fields.
    Betancourt MR; Omovie SJ
    J Chem Phys; 2009 May; 130(19):195103. PubMed ID: 19466867
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An analytical study of the interplay between geometrical and energetic effects in protein folding.
    Suzuki Y; Noel JK; Onuchic JN
    J Chem Phys; 2008 Jan; 128(2):025101. PubMed ID: 18205476
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Helix-coil transition of alanine peptides in water: force field dependence on the folded and unfolded structures.
    Gnanakaran S; García AE
    Proteins; 2005 Jun; 59(4):773-82. PubMed ID: 15815975
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing.
    Pande VS; Baker I; Chapman J; Elmer SP; Khaliq S; Larson SM; Rhee YM; Shirts MR; Snow CD; Sorin EJ; Zagrovic B
    Biopolymers; 2003 Jan; 68(1):91-109. PubMed ID: 12579582
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robustness and generalization of structure-based models for protein folding and function.
    Lammert H; Schug A; Onuchic JN
    Proteins; 2009 Dec; 77(4):881-91. PubMed ID: 19626713
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced free-energy calculation using multiscale simulation.
    Shimoyama H; Yonezawa Y; Nakamura H
    J Chem Phys; 2010 Oct; 133(13):135101. PubMed ID: 20942558
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improvements of network approach for analysis of the folding free-energy surface of peptides and proteins.
    Jiang X; Chen C; Xiao Y
    J Comput Chem; 2010 Oct; 31(13):2502-9. PubMed ID: 20652992
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heuristic energy landscape paving for protein folding problem in the three-dimensional HP lattice model.
    Liu J; Li G; Yu J; Yao Y
    Comput Biol Chem; 2012 Jun; 38():17-26. PubMed ID: 22551826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inferring a weighted elastic network from partial unfolding with coarse-grained simulations.
    de Mendonça MR; Rizzi LG; Contessoto V; Leite VB; Alves NA
    Proteins; 2014 Jan; 82(1):119-29. PubMed ID: 23900877
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Folding of oligoglutamines: a theoretical approach based upon thermodynamics and molecular mechanics.
    Starikov EB; Lehrach H; Wanker EE
    J Biomol Struct Dyn; 1999 Dec; 17(3):409-27. PubMed ID: 10636078
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A path planning-based study of protein folding with a case study of hairpin formation in protein G and L.
    Song G; Thomas S; Dill KA; Scholtz JM; Amato NM
    Pac Symp Biocomput; 2003; ():240-51. PubMed ID: 12603032
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Delineation of folding pathways of a β-sheet miniprotein.
    Zheng W; Qi B; Rohrdanz MA; Caflisch A; Dinner AR; Clementi C
    J Phys Chem B; 2011 Nov; 115(44):13065-74. PubMed ID: 21942785
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction of folding equilibria of differently substituted peptides using one-step perturbation.
    Lin Z; Kornfeld J; Mächler M; van Gunsteren WF
    J Am Chem Soc; 2010 Jun; 132(21):7276-8. PubMed ID: 20459089
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fuzzy-oil-drop hydrophobic force field--a model to represent late-stage folding (in silico) of lysozyme.
    Brylinski M; Konieczny L; Roterman I
    J Biomol Struct Dyn; 2006 Apr; 23(5):519-28. PubMed ID: 16494501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.