These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 19833136)
61. Coarse-grained models for protein folding and aggregation. Derreumaux P Methods Mol Biol; 2013; 924():585-600. PubMed ID: 23034764 [TBL] [Abstract][Full Text] [Related]
62. FF12MC: A revised AMBER forcefield and new protein simulation protocol. Pang YP Proteins; 2016 Oct; 84(10):1490-516. PubMed ID: 27348292 [TBL] [Abstract][Full Text] [Related]
63. Principal component analysis for protein folding dynamics. Maisuradze GG; Liwo A; Scheraga HA J Mol Biol; 2009 Jan; 385(1):312-29. PubMed ID: 18952103 [TBL] [Abstract][Full Text] [Related]
64. Protocols for efficient simulations of long-time protein dynamics using coarse-grained CABS model. Jamroz M; Kolinski A; Kmiecik S Methods Mol Biol; 2014; 1137():235-50. PubMed ID: 24573485 [TBL] [Abstract][Full Text] [Related]
65. Transferable coarse-grained potential for de novo protein folding and design. Coluzza I PLoS One; 2014; 9(12):e112852. PubMed ID: 25436908 [TBL] [Abstract][Full Text] [Related]
66. New method for determining size of critical nucleus of fibril formation of polypeptide chains. Co NT; Li MS J Chem Phys; 2012 Sep; 137(9):095101. PubMed ID: 22957596 [TBL] [Abstract][Full Text] [Related]
67. Free energy of contact formation in proteins: efficient computation in the elastic network approximation. Hamacher K Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016703. PubMed ID: 21867339 [TBL] [Abstract][Full Text] [Related]
68. Protein Folding and Structure Prediction from the Ground Up: The Atomistic Associative Memory, Water Mediated, Structure and Energy Model. Chen M; Lin X; Zheng W; Onuchic JN; Wolynes PG J Phys Chem B; 2016 Aug; 120(33):8557-65. PubMed ID: 27148634 [TBL] [Abstract][Full Text] [Related]
69. Application of a Distance-Dependent Sigmoidal Dielectric Constant to the REMC/SAAP3D Simulations of Chignolin, Trp-Cage, and the G10q Mutant. Iwaoka M; Yoshida K; Shimosato T Protein J; 2020 Oct; 39(5):402-410. PubMed ID: 33108545 [TBL] [Abstract][Full Text] [Related]
70. Fully analytic energy gradient in the fragment molecular orbital method. Nagata T; Brorsen K; Fedorov DG; Kitaura K; Gordon MS J Chem Phys; 2011 Mar; 134(12):124115. PubMed ID: 21456653 [TBL] [Abstract][Full Text] [Related]
71. Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Betancourt MR; Thirumalai D Protein Sci; 1999 Feb; 8(2):361-9. PubMed ID: 10048329 [TBL] [Abstract][Full Text] [Related]
72. All-atom simulations of protein folding and unfolding. Day R; Daggett V Adv Protein Chem; 2003; 66():373-403. PubMed ID: 14631823 [No Abstract] [Full Text] [Related]
73. Residue Folding Degree-Relationship to Secondary Structure Categories and Use as Collective Variable. Sladek V; Harada R; Shigeta Y Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884847 [TBL] [Abstract][Full Text] [Related]
74. On the design and analysis of protein folding potentials. Tobi D; Shafran G; Linial N; Elber R Proteins; 2000 Jul; 40(1):71-85. PubMed ID: 10813832 [TBL] [Abstract][Full Text] [Related]
75. Glassy dynamics of protein folding. Tüzel E; Erzan A Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):R1040-3. PubMed ID: 11046533 [TBL] [Abstract][Full Text] [Related]
76. Characterizing protein energy landscape by self-learning multiscale simulations: application to a designed β-hairpin. Li W; Takada S Biophys J; 2010 Nov; 99(9):3029-37. PubMed ID: 21044601 [TBL] [Abstract][Full Text] [Related]
77. MinActionPath: maximum likelihood trajectory for large-scale structural transitions in a coarse-grained locally harmonic energy landscape. Franklin J; Koehl P; Doniach S; Delarue M Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W477-82. PubMed ID: 17545201 [TBL] [Abstract][Full Text] [Related]
78. Mechanism of β-hairpin formation in AzoChignolin and Chignolin. Zschau RL; Zacharias M J Comput Chem; 2023 Apr; 44(9):988-1001. PubMed ID: 36575994 [TBL] [Abstract][Full Text] [Related]
79. A coarse-grained approach to protein design: learning from design to understand folding. Coluzza I PLoS One; 2011; 6(7):e20853. PubMed ID: 21747930 [TBL] [Abstract][Full Text] [Related]
80. Scaling of folding times with protein size. Naganathan AN; Muñoz V J Am Chem Soc; 2005 Jan; 127(2):480-1. PubMed ID: 15643845 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]