These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 19833136)
81. Exploring the energy landscapes of protein folding simulations with Bayesian computation. Burkoff NS; Várnai C; Wells SA; Wild DL Biophys J; 2012 Feb; 102(4):878-86. PubMed ID: 22385859 [TBL] [Abstract][Full Text] [Related]
82. Lattice protein folding with two and four-body statistical potentials. Gan HH; Tropsha A; Schlick T Proteins; 2001 May; 43(2):161-74. PubMed ID: 11276086 [TBL] [Abstract][Full Text] [Related]
83. Three-body interactions improve the prediction of rate and mechanism in protein folding models. Ejtehadi MR; Avall SP; Plotkin SS Proc Natl Acad Sci U S A; 2004 Oct; 101(42):15088-93. PubMed ID: 15469920 [TBL] [Abstract][Full Text] [Related]
84. Packing helices in proteins by global optimization of a potential energy function. Nanias M; Chinchio M; Pillardy J; Ripoll DR; Scheraga HA Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1706-10. PubMed ID: 12571353 [TBL] [Abstract][Full Text] [Related]
85. Searching the Optimal Folding Routes of a Complex Lasso Protein. Perego C; Potestio R Biophys J; 2019 Jul; 117(2):214-228. PubMed ID: 31235180 [TBL] [Abstract][Full Text] [Related]
86. A Stochastic Landscape Approach for Protein Folding State Classification. Faran M; Ray D; Nag S; Raucci U; Parrinello M; Bisker G J Chem Theory Comput; 2024 Jul; 20(13):5428-5438. PubMed ID: 38924770 [TBL] [Abstract][Full Text] [Related]
87. Persistent homology analysis of protein structure, flexibility, and folding. Xia K; Wei GW Int J Numer Method Biomed Eng; 2014 Aug; 30(8):814-44. PubMed ID: 24902720 [TBL] [Abstract][Full Text] [Related]
88. FLIPPER: Predicting and Characterizing Linear Interacting Peptides in the Protein Data Bank. Monzon AM; Bonato P; Necci M; Tosatto SCE; Piovesan D J Mol Biol; 2021 Apr; 433(9):166900. PubMed ID: 33647288 [TBL] [Abstract][Full Text] [Related]
89. The Sensitivity of Computational Protein Folding to Contact Map Perturbations: The Case of Ubiquitin Folding and Function. Terse VL; Gosavi S J Phys Chem B; 2018 Dec; 122(49):11497-11507. PubMed ID: 30234303 [TBL] [Abstract][Full Text] [Related]
90. Fast and flexible coarse-grained prediction of protein folding routes using ensemble modeling and evolutionary sequence variation. Becerra D; Butyaev A; Waldispühl J Bioinformatics; 2020 Mar; 36(5):1420-1428. PubMed ID: 31584628 [TBL] [Abstract][Full Text] [Related]
91. Folding a small protein using harmonic linear discriminant analysis. Mendels D; Piccini G; Brotzakis ZF; Yang YI; Parrinello M J Chem Phys; 2018 Nov; 149(19):194113. PubMed ID: 30466286 [TBL] [Abstract][Full Text] [Related]
92. The roughness of the protein energy landscape results in anomalous diffusion of the polypeptide backbone. Volk M; Milanesi L; Waltho JP; Hunter CA; Beddard GS Phys Chem Chem Phys; 2015 Jan; 17(2):762-82. PubMed ID: 25412176 [TBL] [Abstract][Full Text] [Related]
93. What can one learn from experiments about the elusive transition state? Chang I; Cieplak M; Banavar JR; Maritan A Protein Sci; 2004 Sep; 13(9):2446-57. PubMed ID: 15295118 [TBL] [Abstract][Full Text] [Related]
94. Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. Shen Y; Maupetit J; Derreumaux P; Tufféry P J Chem Theory Comput; 2014 Oct; 10(10):4745-58. PubMed ID: 26588162 [TBL] [Abstract][Full Text] [Related]
95. Contact Statistics Highlight Distinct Organizing Principles of Proteins and RNA. Liu L; Hyeon C Biophys J; 2016 Jun; 110(11):2320-2327. PubMed ID: 27276250 [TBL] [Abstract][Full Text] [Related]
96. Energy landscape and global optimization for a frustrated model protein. Oakley MT; Wales DJ; Johnston RL J Phys Chem B; 2011 Oct; 115(39):11525-9. PubMed ID: 21866973 [TBL] [Abstract][Full Text] [Related]
97. Effects of Externally Applied Electric Fields on the Manipulation of Solvated-Chignolin Folding: Static- versus Alternating-Field Dichotomy at Play. Wu H; Ghaani MR; Futera Z; English NJ J Phys Chem B; 2022 Jan; 126(2):376-386. PubMed ID: 35001614 [TBL] [Abstract][Full Text] [Related]
98. Structural diversity of sequentially identical subsequences of proteins: identical octapeptides can have different conformations. Sudarsanam S Proteins; 1998 Feb; 30(3):228-31. PubMed ID: 9517538 [TBL] [Abstract][Full Text] [Related]
99. Designing potential energy functions for protein folding. Hao MH; Scheraga HA Curr Opin Struct Biol; 1999 Apr; 9(2):184-8. PubMed ID: 10322206 [TBL] [Abstract][Full Text] [Related]
100. Enriched Conformational Sampling of DNA and Proteins with a Hybrid Hamiltonian Derived from the Protein Data Bank. Peter EK; Cerny J Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30380800 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]