These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 19833369)

  • 1. Characterization of HIFU transducers designed for sonochemistry application: cavitation distribution and quantification.
    Hallez L; Touyeras F; Hihn JY; Klima J; Guey JL; Spajer M; Bailly Y
    Ultrasonics; 2010 Feb; 50(2):310-7. PubMed ID: 19833369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.
    Hallez L; Touyeras F; Hihn JY; Bailly Y
    Ultrason Sonochem; 2016 Mar; 29():420-7. PubMed ID: 26585023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal and spatial detection of HIFU-induced inertial and hot-vapor cavitation with a diagnostic ultrasound system.
    Farny CH; Holt RG; Roy RA
    Ultrasound Med Biol; 2009 Apr; 35(4):603-15. PubMed ID: 19110368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field.
    Cao H; Wan M; Qiao Y; Zhang S; Li R
    Ultrason Sonochem; 2012 Mar; 19(2):257-63. PubMed ID: 21862375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed observation of cavitation bubble cloud structures in the focal region of a 1.2 MHz high-intensity focused ultrasound transducer.
    Chen H; Li X; Wan M; Wang S
    Ultrason Sonochem; 2007 Mar; 14(3):291-7. PubMed ID: 17071124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive spatial mapping of inertial cavitation during HIFU exposure.
    Gyöngy M; Coussios CC
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):48-56. PubMed ID: 19628450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound.
    Chen H; Li X; Wan M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e427-9. PubMed ID: 16782158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect on High-Intensity Fields of a Tough Hydrophone With Hydrothermal PZT Thick-Film Vibrator and Titanium Front Layer.
    Okada N; Takeuchi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jul; 64(7):1120-1126. PubMed ID: 28436860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies.
    Ashokkumar M; Lee J; Iida Y; Yasui K; Kozuka T; Tuziuti T; Towata A
    Chemphyschem; 2010 Jun; 11(8):1680-4. PubMed ID: 20301178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method for estimating the focal size of two confocal high-intensity focused ultrasound transducers.
    Chen WS; Ma PM; Liu HL; Yeh CK; Chen MS; Chang CW
    J Acoust Soc Am; 2005 Jun; 117(6):3740-9. PubMed ID: 16018477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ray-based acoustic localization of cavitation in a highly reverberant environment.
    Chang NA; Dowling DR
    J Acoust Soc Am; 2009 May; 125(5):3088-100. PubMed ID: 19425652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surfactants on inertial cavitation activity in a pulsed acoustic field.
    Lee J; Kentish S; Matula TJ; Ashokkumar M
    J Phys Chem B; 2005 Sep; 109(35):16860-5. PubMed ID: 16853145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.
    Liu HL; Hsieh CM
    Ultrason Sonochem; 2009 Mar; 16(3):431-8. PubMed ID: 18951828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of high intensity focused ultrasound transducers using acoustic streaming.
    Hariharan P; Myers MR; Robinson RA; Maruvada SH; Sliwa J; Banerjee RK
    J Acoust Soc Am; 2008 Mar; 123(3):1706-19. PubMed ID: 18345858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement and quenching of high-intensity focused ultrasound cavitation activity via short frequency sweep gaps.
    Hallez L; Lee J; Touyeras F; Nevers A; Ashokkumar M; Hihn JY
    Ultrason Sonochem; 2016 Mar; 29():194-7. PubMed ID: 26584998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The detection and control of stable and transient acoustic cavitation bubbles.
    Ashokkumar M; Lee J; Iida Y; Yasui K; Kozuka T; Tuziuti T; Towata A
    Phys Chem Chem Phys; 2009 Nov; 11(43):10118-21. PubMed ID: 19865767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels.
    Zeqiri B; Hodnett M; Carroll AJ
    Ultrasonics; 2006 Jan; 44(1):73-82. PubMed ID: 16213538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cone-like bubble formation in ultrasonic cavitation field.
    Moussatov A; Granger C; Dubus B
    Ultrason Sonochem; 2003 Jul; 10(4-5):191-5. PubMed ID: 12818381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SVD-Based Separation of Stable and Inertial Cavitation Signals Applied to Passive Cavitation Mapping During HIFU.
    Chitnis PV; Farny CH; Roy RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 May; 66(5):857-866. PubMed ID: 30762545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respective contribution of cavitation and convective flow to local stirring in sonoreactors.
    Hihn JY; Doche ML; Mandroyan A; Hallez L; Pollet BG
    Ultrason Sonochem; 2011 Jul; 18(4):881-7. PubMed ID: 21382572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.