These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19833388)

  • 1. Cytotoxicity of implantable microelectrode arrays produced by laser micromachining.
    Green RA; Ordonez JS; Schuettler M; Poole-Warren LA; Lovell NH; Suaning GJ
    Biomaterials; 2010 Feb; 31(5):886-93. PubMed ID: 19833388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil.
    Schuettler M; Stiess S; King BV; Suaning GJ
    J Neural Eng; 2005 Mar; 2(1):S121-8. PubMed ID: 15876647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays.
    Negi S; Bhandari R; Rieth L; Solzbacher F
    Biomed Mater; 2010 Feb; 5(1):15007. PubMed ID: 20124668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro biocompatibility of various polymer-based microelectrode arrays for retinal prosthesis.
    Bae SH; Che JH; Seo JM; Jeong J; Kim ET; Lee SW; Koo KI; Suaning GJ; Lovell NH; Cho DI; Kim SJ; Chung H
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2653-7. PubMed ID: 22427592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling limitations of laser-fabricated nerve electrode arrays.
    Henle C; Schuettler M; Ordonez JS; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4208-11. PubMed ID: 19163640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated electrode and high density feedthrough system for chip-scale implantable devices.
    Green RA; Guenther T; Jeschke C; Jaillon A; Yu JF; Dueck WF; Lim WW; Henderson WC; Vanhoestenberghe A; Lovell NH; Suaning GJ
    Biomaterials; 2013 Aug; 34(26):6109-18. PubMed ID: 23706781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrix-addressable, active electrode arrays for neural stimulation using organic semiconductors-cytotoxicity and pilot experiments in vivo.
    Feili D; Schuettler M; Stieglitz T
    J Neural Eng; 2008 Mar; 5(1):68-74. PubMed ID: 18310812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microelectrode array fabrication by electrical discharge machining and chemical etching.
    Fofonoff TA; Martel SM; Hatsopoulos NG; Donoghue JP; Hunter IW
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):890-5. PubMed ID: 15188855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain.
    McConnell GC; Schneider TM; Owens DJ; Bellamkonda RV
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1097-107. PubMed ID: 17554828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays.
    Biran R; Martin DC; Tresco PA
    Exp Neurol; 2005 Sep; 195(1):115-26. PubMed ID: 16045910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pt-Pb nanowire array electrode for enzyme-free glucose detection.
    Bai Y; Sun Y; Sun C
    Biosens Bioelectron; 2008 Dec; 24(4):579-85. PubMed ID: 18619831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A MEMS fabricated flexible electrode array for recording surface field potentials.
    Hollenberg BA; Richards CD; Richards R; Bahr DF; Rector DM
    J Neurosci Methods; 2006 May; 153(1):147-53. PubMed ID: 16352343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physico-chemical and biological evaluation of excimer laser irradiated polyethylene terephthalate (pet) surfaces.
    Mayer G; Blanchemain N; Dupas-Bruzek C; Miri V; Traisnel M; Gengembre L; Derozier D; Hildebrand HF
    Biomaterials; 2006 Feb; 27(4):553-66. PubMed ID: 16024074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex.
    Jensen W; Yoshida K; Hofmann UG
    IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.
    Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y
    Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo (cyto)toxicity assays using PVC and LDPE as model materials.
    Van Tienhoven EA; Korbee D; Schipper L; Verharen HW; De Jong WH
    J Biomed Mater Res A; 2006 Jul; 78(1):175-82. PubMed ID: 16628708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantable flexible electrodes for functional electrical stimulation.
    Schneider A; Stieglitz T
    Med Device Technol; 2004; 15(1):16-8. PubMed ID: 14994633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex.
    Edell DJ; Toi VV; McNeil VM; Clark LD
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):635-43. PubMed ID: 1601445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.