These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 19834250)

  • 1. Metal-insulator transition in Au-NiO-Ni dual Schottky nanojunctions.
    Sun JL; Zhao X; Zhu JL
    Nanotechnology; 2009 Nov; 20(45):455203. PubMed ID: 19834250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistive-switching crossbar memory based on Ni-NiO core-shell nanowires.
    Cagli C; Nardi F; Harteneck B; Tan Z; Zhang Y; Ielmini D
    Small; 2011 Oct; 7(20):2899-905. PubMed ID: 21874659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices.
    Jeon EK; Seo H; Ahn CW; Seong H; Choi HJ; Kim JJ; Kong KJ; Buh G; Chang H; Lee JO
    Nanotechnology; 2009 Mar; 20(11):115708. PubMed ID: 19420456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as an example.
    Wei ZP; Arredondo M; Peng HY; Zhang Z; Guo DL; Xing GZ; Li YF; Wong LM; Wang SJ; Valanoor N; Wu T
    ACS Nano; 2010 Aug; 4(8):4785-91. PubMed ID: 20614899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A closer look: magnetic behavior of a three-dimensional cyanometalate coordination polymer dominated by a trace amount of nanoparticle impurity.
    Lefebvre J; Trudel S; Hill RH; Leznoff DB
    Chemistry; 2008; 14(24):7156-67. PubMed ID: 18666297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study on high temperature oxidation of Ni-Cr ceramic alloys. Effects of Cr and Mo].
    Mizutani M
    Aichi Gakuin Daigaku Shigakkai Shi; 1990 Mar; 28(1 Pt 1):59-78. PubMed ID: 2135111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithographically patterned nanowire electrodeposition: a method for patterning electrically continuous metal nanowires on dielectrics.
    Xiang C; Kung SC; Taggart DK; Yang F; Thompson MA; Güell AG; Yang Y; Penner RM
    ACS Nano; 2008 Sep; 2(9):1939-49. PubMed ID: 19206435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current transport mechanism in a metal-GaN nanowire Schottky diode.
    Lee SY; Lee SK
    Nanotechnology; 2007 Dec; 18(49):495701. PubMed ID: 20442482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays.
    Shimpi P; Gao PX; Goberman DG; Ding Y
    Nanotechnology; 2009 Mar; 20(12):125608. PubMed ID: 19420477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism behind the selective metal nanoscale etch method for precise metal nanopatterning.
    Lee BC; Kim MH; Krishnan JN; Kim SK; Moon S; Lee SY; Shin HJ
    Nanotechnology; 2009 Feb; 20(6):065302. PubMed ID: 19417378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale control of an interfacial metal-insulator transition at room temperature.
    Cen C; Thiel S; Hammerl G; Schneider CW; Andersen KE; Hellberg CS; Mannhart J; Levy J
    Nat Mater; 2008 Apr; 7(4):298-302. PubMed ID: 18311143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties.
    Pan H; Liu B; Yi J; Poh C; Lim S; Ding J; Feng Y; Huan CH; Lin J
    J Phys Chem B; 2005 Mar; 109(8):3094-8. PubMed ID: 16851327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional self-organization of an ordered Au silicide nanowire network on a Si(110)-16 x 2 surface.
    Hong IeH; Yen SC; Lin FS
    Small; 2009 Aug; 5(16):1855-61. PubMed ID: 19544319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-dependent orientation growth of large-area ordered Ni nanowire arrays.
    Wang XW; Fei GT; Xu XJ; Jin Z; Zhang LD
    J Phys Chem B; 2005 Dec; 109(51):24326-30. PubMed ID: 16375431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical metal deposition on top of an organic monolayer.
    Qu D; Uosaki K
    J Phys Chem B; 2006 Sep; 110(35):17570-7. PubMed ID: 16942100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular electrodes at the exposed edge of metal/insulator/metal trilayer structures.
    Tyagi P; Li D; Holmes SM; Hinds BJ
    J Am Chem Soc; 2007 Apr; 129(16):4929-38. PubMed ID: 17391029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.
    Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y
    Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct deposition of size-tunable Au nanoparticles on silicon oxide nanowires.
    Kim JH; An HH; Kim HS; Kim YH; Yoon CS
    J Colloid Interface Sci; 2009 Sep; 337(1):289-93. PubMed ID: 19477456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic field assisting DC electrodeposition: general methods for high-performance Ni nanowire array fabrication.
    Tian F; Zhu J; Wei D; Shen YT
    J Phys Chem B; 2005 Aug; 109(31):14852-4. PubMed ID: 16852880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aluminum electrode modulated bipolar resistive switching of Al/fuel-assisted NiOx/ITO memory devices modeled with a dual-oxygen-reservoir structure.
    Chiang KK; Chen JS; Wu JJ
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4237-45. PubMed ID: 22769023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.