These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19834356)

  • 1. Fundus autofluorescence patterns in eyes with primary intraocular lymphoma.
    Ishida T; Ohno-Matsui K; Kaneko Y; Tobita H; Shimada N; Takase H; Mochizuki M
    Retina; 2010 Jan; 30(1):23-32. PubMed ID: 19834356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundus autofluorescence patterns in primary intraocular lymphoma.
    Casady M; Faia L; Nazemzadeh M; Nussenblatt R; Chan CC; Sen HN
    Retina; 2014 Feb; 34(2):366-72. PubMed ID: 23958842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ULTRA-WIDEFIELD MULTIMODAL IMAGING OF PRIMARY VITREORETINAL LYMPHOMA.
    Lavine JA; Singh AD; Sharma S; Baynes K; Lowder CY; Srivastava SK
    Retina; 2019 Oct; 39(10):1861-1871. PubMed ID: 30044267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myopic stretch lines: linear lesions in fundus of eyes with pathologic myopia that differ from lacquer cracks.
    Shinohara K; Moriyama M; Shimada N; Tanaka Y; Ohno-Matsui K
    Retina; 2014 Mar; 34(3):461-9. PubMed ID: 24013262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal pigment epithelial changes in chronic Vogt-Koyanagi-Harada disease: fundus autofluorescence and spectral domain-optical coherence tomography findings.
    Vasconcelos-Santos DV; Sohn EH; Sadda S; Rao NA
    Retina; 2010 Jan; 30(1):33-41. PubMed ID: 20010321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study between fundus autofluorescence and red reflectance imaging of choroidal nevi using ultra-wide-field scanning laser ophthalmoscopy.
    Zapata MA; Leila M; Teixidor T; Garcia-Arumi J
    Retina; 2015 Jun; 35(6):1202-10. PubMed ID: 25650707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundus autofluorescence and optical coherence tomography of congenital grouped albinotic spots.
    Kim DY; Hwang JC; Moore AT; Bird AC; Tsang SH
    Retina; 2010 Sep; 30(8):1217-22. PubMed ID: 20539258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration.
    Kellner U; Kellner S; Weinitz S
    Retina; 2010 Jan; 30(1):6-15. PubMed ID: 20066766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Panoramic autofluorescence: highlighting retinal pathology.
    Slotnick S; Sherman J
    Optom Vis Sci; 2012 May; 89(5):E575-84. PubMed ID: 22446719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared fundus autofluorescence in multiple evanescent white-dot syndrome.
    Battaglia Parodi M; Iacono P; Falcomatà B; Bolognesi G; Bandello F
    Eur J Ophthalmol; 2015; 25(1):43-6. PubMed ID: 25363853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundus autofluorescence in polypoidal choroidal vasculopathy.
    Yamagishi T; Koizumi H; Yamazaki T; Kinoshita S
    Ophthalmology; 2012 Aug; 119(8):1650-7. PubMed ID: 22512987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormalities of fundus autofluorescence in pigmented paravenous chorioretinal atrophy.
    Hashimoto Y; Kase S; Saito W; Ishida S
    Open Ophthalmol J; 2012; 6():125-8. PubMed ID: 23264840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central serous chorioretinopathy fundus autofluorescence comparison with two different confocal scanning laser ophthalmoscopes.
    Nam KT; Yun CM; Kim JT; Yang KS; Kim HJ; Kim SW; Oh J; Huh K
    Graefes Arch Clin Exp Ophthalmol; 2015 Dec; 253(12):2121-7. PubMed ID: 25690981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal imaging in persistent placoid maculopathy.
    Gendy MG; Fawzi AA; Wendel RT; Pieramici DJ; Miller JA; Jampol LM
    JAMA Ophthalmol; 2014 Jan; 132(1):38-49. PubMed ID: 24310266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundus autofluorescence in type 2 idiopathic macular telangiectasia: correlation with optical coherence tomography and microperimetry.
    Wong WT; Forooghian F; Majumdar Z; Bonner RF; Cunningham D; Chew EY
    Am J Ophthalmol; 2009 Oct; 148(4):573-83. PubMed ID: 19573860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral-domain optical coherence tomographic and fundus autofluorescence findings in eyes with primary intraocular lymphoma.
    Egawa M; Mitamura Y; Hayashi Y; Naito T
    Clin Ophthalmol; 2014; 8():335-41. PubMed ID: 24520190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy.
    Brar M; Kozak I; Cheng L; Bartsch DU; Yuson R; Nigam N; Oster SF; Mojana F; Freeman WR
    Am J Ophthalmol; 2009 Sep; 148(3):439-44. PubMed ID: 19541290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors Influencing Retinal Pigment Epithelium-Atrophy Progression Rate in Stargardt Disease.
    Cicinelli MV; Rabiolo A; Brambati M; Viganò C; Bandello F; Battaglia Parodi M
    Transl Vis Sci Technol; 2020 Jun; 9(7):33. PubMed ID: 32832238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundus autofluorescence and microperimetry in progressing geographic atrophy secondary to age-related macular degeneration.
    Pilotto E; Guidolin F; Convento E; Spedicato L; Vujosevic S; Cavarzeran F; Midena E
    Br J Ophthalmol; 2013 May; 97(5):622-6. PubMed ID: 23410728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundus autofluorescence and spectral-domain optical coherence tomography findings of leopard spots in nanophthalmic uveal effusion syndrome.
    Okuda T; Higashide T; Wakabayashi Y; Nishimura A; Sugiyama K
    Graefes Arch Clin Exp Ophthalmol; 2010 Aug; 248(8):1199-202. PubMed ID: 20300765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.