These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 1983447)
21. A combined neurochemical and neurophysiological approach to identification of central nervous system transmitters. Aprison MH; Werman R Neurosci Res (N Y); 1968; 1(0):143-74. PubMed ID: 4152429 [No Abstract] [Full Text] [Related]
22. Sprouting of axons and growth of new synapses in the central nervous system: a possible mechanism of functional recovery. Part 1. Leong SK Mod Med Asia; 1976 Nov; 12(11):11-4 contd. PubMed ID: 1012261 [No Abstract] [Full Text] [Related]
23. [Amino acids as transmitters (glutamic acid and asparaginic acid)]. Onodera K Nihon Rinsho; 1978; 36(1):39-44. PubMed ID: 24763 [No Abstract] [Full Text] [Related]
24. Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Liu G; Choi S; Tsien RW Neuron; 1999 Feb; 22(2):395-409. PubMed ID: 10069344 [TBL] [Abstract][Full Text] [Related]
25. The main neural processes as a basis of the evolution of neural activity. Kostyuk PG Neurosci Behav Physiol; 1981; 11(6):610-3. PubMed ID: 6127650 [No Abstract] [Full Text] [Related]
26. Extracellular K+ accumulation in the central nervous system. Syková E Prog Biophys Mol Biol; 1983; 42(2-3):135-89. PubMed ID: 6139844 [No Abstract] [Full Text] [Related]
27. Recent perspectives on the organization of central synapses. Jones DG Anesth Analg; 1983 Dec; 62(12):1100-12. PubMed ID: 6139964 [No Abstract] [Full Text] [Related]
28. Synaptic and nonsynaptic transmission: a historical perspective. Florey E Neurochem Res; 1984 Mar; 9(3):413-27. PubMed ID: 6146101 [No Abstract] [Full Text] [Related]
29. The electrophysiology of adenosine in the mammalian central nervous system. Greene RW; Haas HL Prog Neurobiol; 1991; 36(4):329-41. PubMed ID: 1678539 [No Abstract] [Full Text] [Related]
33. N- and P/Q-type Ca2+ channels regulate synaptic efficacy between spinal dorsolateral funiculus terminals and motoneurons. Aguilar J; Escobedo L; Bautista W; Felix R; Delgado-Lezama R Biochem Biophys Res Commun; 2004 Apr; 317(2):551-7. PubMed ID: 15063793 [TBL] [Abstract][Full Text] [Related]
34. Advantages of an antagonist. Nature; 1970 Jun; 226(5252):1199-200. PubMed ID: 4393078 [No Abstract] [Full Text] [Related]
35. Trace amines and alternative neurotransmitters in the central nervous system. Baldessarini RJ Biochem Pharmacol; 1978 Mar; 27(5):621-6. PubMed ID: 26346 [No Abstract] [Full Text] [Related]
36. Synaptic transmission on the Barrier Reef. Redman SJ; Walmsley B Trends Neurosci; 2002 Jan; 25(1):12-3. PubMed ID: 11801326 [TBL] [Abstract][Full Text] [Related]
37. Persistent changes in transmission in spinal monosynaptic pathway after prolonged tetanization. Zablocka-Esplin B; Esplin DW J Neurophysiol; 1971 Sep; 34(5):860-7. PubMed ID: 4398564 [No Abstract] [Full Text] [Related]
38. Central nervous system synapses in cell culture. Nelson PG Cold Spring Harb Symp Quant Biol; 1976; 40():359-71. PubMed ID: 181199 [No Abstract] [Full Text] [Related]
39. Quantal analysis of synaptic potentials in neurons of the central nervous system. Redman S Physiol Rev; 1990 Jan; 70(1):165-98. PubMed ID: 2404288 [No Abstract] [Full Text] [Related]
40. [Morphofunctional mechanisms of regulating impulse conduction and the formation of functional systems of neurons in the CNS]. Leontovich TA Usp Fiziol Nauk; 1980; 11(3):64-84. PubMed ID: 6251653 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]