These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 19834554)

  • 1. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.
    Schwan C; Stecher B; Tzivelekidis T; van Ham M; Rohde M; Hardt WD; Wehland J; Aktories K
    PLoS Pathog; 2009 Oct; 5(10):e1000626. PubMed ID: 19834554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binary Clostridium difficile toxin (CDT) - A virulence factor disturbing the cytoskeleton.
    Aktories K; Papatheodorou P; Schwan C
    Anaerobe; 2018 Oct; 53():21-29. PubMed ID: 29524654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol- and sphingolipid-rich microdomains are essential for microtubule-based membrane protrusions induced by Clostridium difficile transferase (CDT).
    Schwan C; Nölke T; Kruppke AS; Schubert DM; Lang AE; Aktories K
    J Biol Chem; 2011 Aug; 286(33):29356-29365. PubMed ID: 21705797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane translocation of binary actin-ADP-ribosylating toxins from Clostridium difficile and Clostridium perfringens is facilitated by cyclophilin A and Hsp90.
    Kaiser E; Kroll C; Ernst K; Schwan C; Popoff M; Fischer G; Buchner J; Aktories K; Barth H
    Infect Immun; 2011 Oct; 79(10):3913-21. PubMed ID: 21768281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence.
    Schwan C; Kruppke AS; Nölke T; Schumacher L; Koch-Nolte F; Kudryashev M; Stahlberg H; Aktories K
    Proc Natl Acad Sci U S A; 2014 Feb; 111(6):2313-8. PubMed ID: 24469807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Septins guide microtubule protrusions induced by actin-depolymerizing toxins like Clostridium difficile transferase (CDT).
    Nölke T; Schwan C; Lehmann F; Østevold K; Pertz O; Aktories K
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7870-5. PubMed ID: 27339141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT).
    Papatheodorou P; Carette JE; Bell GW; Schwan C; Guttenberg G; Brummelkamp TR; Aktories K
    Proc Natl Acad Sci U S A; 2011 Sep; 108(39):16422-7. PubMed ID: 21930894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clostridium difficile Toxin Biology.
    Aktories K; Schwan C; Jank T
    Annu Rev Microbiol; 2017 Sep; 71():281-307. PubMed ID: 28657883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clostridium difficile binary toxin CDT induces clustering of the lipolysis-stimulated lipoprotein receptor into lipid rafts.
    Papatheodorou P; Hornuss D; Nölke T; Hemmasi S; Castonguay J; Picchianti M; Aktories K
    mBio; 2013 Apr; 4(3):e00244-13. PubMed ID: 23631918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.
    Schnell L; Mittler AK; Sadi M; Popoff MR; Schwan C; Aktories K; Mattarei A; Azarnia Tehran D; Montecucco C; Barth H
    Toxins (Basel); 2016 Apr; 8(4):101. PubMed ID: 27043629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of the Clostridium difficile Binary Toxin CDT and Its Host Cell Receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR).
    Hemmasi S; Czulkies BA; Schorch B; Veit A; Aktories K; Papatheodorou P
    J Biol Chem; 2015 May; 290(22):14031-44. PubMed ID: 25882847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cytotoxic effect of Clostridioides difficile pore-forming toxin CDTb.
    Landenberger M; Nieland J; Roeder M; Nørgaard K; Papatheodorou P; Ernst K; Barth H
    Biochim Biophys Acta Biomembr; 2021 Jun; 1863(6):183603. PubMed ID: 33689753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance.
    Gerding DN; Johnson S; Rupnik M; Aktories K
    Gut Microbes; 2014; 5(1):15-27. PubMed ID: 24253566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the cellular receptor of Clostridium spiroforme toxin.
    Papatheodorou P; Wilczek C; Nölke T; Guttenberg G; Hornuss D; Schwan C; Aktories K
    Infect Immun; 2012 Apr; 80(4):1418-23. PubMed ID: 22252869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional attack on the actin cytoskeleton. Bacterial protein toxins causing polymerization or depolymerization of actin.
    Aktories K; Schwan C; Papatheodorou P; Lang AE
    Toxicon; 2012 Sep; 60(4):572-81. PubMed ID: 22543189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile.
    Gülke I; Pfeifer G; Liese J; Fritz M; Hofmann F; Aktories K; Barth H
    Infect Immun; 2001 Oct; 69(10):6004-11. PubMed ID: 11553537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalence and characterization of a binary toxin (actin-specific ADP-ribosyltransferase) from Clostridium difficile.
    Gonçalves C; Decré D; Barbut F; Burghoffer B; Petit JC
    J Clin Microbiol; 2004 May; 42(5):1933-9. PubMed ID: 15131151
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Alam MZ; Madan R
    Toxins (Basel); 2024 May; 16(6):. PubMed ID: 38922136
    [No Abstract]   [Full Text] [Related]  

  • 19. Human intestinal enteroids as a model of
    Engevik MA; Danhof HA; Chang-Graham AL; Spinler JK; Engevik KA; Herrmann B; Endres BT; Garey KW; Hyser JM; Britton RA; Versalovic J
    Am J Physiol Gastrointest Liver Physiol; 2020 May; 318(5):G870-G888. PubMed ID: 32223302
    [No Abstract]   [Full Text] [Related]  

  • 20. Human peptide α-defensin-1 interferes with Clostridioides difficile toxins TcdA, TcdB, and CDT.
    Fischer S; Ückert AK; Landenberger M; Papatheodorou P; Hoffmann-Richter C; Mittler AK; Ziener U; Hägele M; Schwan C; Müller M; Kleger A; Benz R; Popoff MR; Aktories K; Barth H
    FASEB J; 2020 May; 34(5):6244-6261. PubMed ID: 32190927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.