BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 19834894)

  • 1. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural.
    Lin FM; Tan Y; Yuan YJ
    Proteomics; 2009 Dec; 9(24):5471-83. PubMed ID: 19834894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae.
    Li BZ; Yuan YJ
    Appl Microbiol Biotechnol; 2010 May; 86(6):1915-24. PubMed ID: 20309542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.
    Gorsich SW; Dien BS; Nichols NN; Slininger PJ; Liu ZL; Skory CD
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):339-49. PubMed ID: 16222531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Preliminary proteome analysis for Saccharomyces cerevisiae under different culturing conditions].
    Zhang HM; Yao SJ; Peng LF; Shimizu K
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):398-402. PubMed ID: 15971613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions.
    Pham TK; Chong PK; Gan CS; Wright PC
    J Proteome Res; 2006 Dec; 5(12):3411-9. PubMed ID: 17137342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of calcium alginate-immobilized Saccharomyces cerevisiae under high-gravity fermentation conditions.
    Pham TK; Wright PC
    J Proteome Res; 2008 Feb; 7(2):515-25. PubMed ID: 18171021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inoculation-density-dependent responses and pathway shifts in Saccharomyces cerevisiae.
    Cheng JS; Ding MZ; Tian HC; Yuan YJ
    Proteomics; 2009 Oct; 9(20):4704-13. PubMed ID: 19743421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS; Zhou X; Ding MZ; Yuan YJ
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains.
    Garay-Arroyo A; Covarrubias AA; Clark I; Niño I; Gosset G; Martinez A
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):734-41. PubMed ID: 12910327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors.
    Liu ZL
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):27-36. PubMed ID: 17028874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.
    Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forced expression of FLO11 confers pellicle-forming ability and furfural tolerance on Saccharomyces cerevisiae in ethanol production.
    Nakagawa Y; Hasebe T; Ishiai M; Yamamura H; Iimura Y; Hayakawa M
    Biosci Biotechnol Biochem; 2014; 78(4):714-7. PubMed ID: 25036972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.
    Liu ZL; Slininger PJ; Gorsich SW
    Appl Biochem Biotechnol; 2005; 121-124():451-60. PubMed ID: 15917621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite.
    Thorsen M; Lagniel G; Kristiansson E; Junot C; Nerman O; Labarre J; Tamás MJ
    Physiol Genomics; 2007 Jun; 30(1):35-43. PubMed ID: 17327492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p.
    Nisamedtinov I; Lindsey GG; Karreman R; Orumets K; Koplimaa M; Kevvai K; Paalme T
    FEMS Yeast Res; 2008 Sep; 8(6):829-38. PubMed ID: 18625028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound.
    Lin FM; Qiao B; Yuan YJ
    Appl Environ Microbiol; 2009 Jun; 75(11):3765-76. PubMed ID: 19363068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.