These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19835360)

  • 1. Toward the synthesis of the rare N-(trifluoromethyl)amides and the N-(difluoromethylene)-N-(trifluoromethyl)amines [RN(CF3)CF2R'] using BrF3.
    Hagooly Y; Gatenyo J; Hagooly A; Rozen S
    J Org Chem; 2009 Nov; 74(22):8578-82. PubMed ID: 19835360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of difluoroaryldioxoles using BrF3.
    Hagooly Y; Welch MJ; Rozen S
    Org Biomol Chem; 2011 Feb; 9(3):902-5. PubMed ID: 21127811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attaching the fluorine atom to organic molecules using BrF3 and other reagents directly derived from F2.
    Rozen S
    Acc Chem Res; 2005 Oct; 38(10):803-12. PubMed ID: 16231876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing the OCF2O moiety using BrF3.
    Hagooly Y; Rozen S
    J Org Chem; 2008 Sep; 73(17):6780-3. PubMed ID: 18693767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and evaluation of antitumoral activity of ester and amide derivatives of 2-arylamino-6-trifluoromethyl-3-pyridinecarboxylic acids.
    Onnis V; Cocco MT; Lilliu V; Congiu C
    Bioorg Med Chem; 2008 Mar; 16(5):2367-78. PubMed ID: 18065230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of anionically activated trifluoromethyl groups to heterocycles under mild aqueous conditions.
    Qiao JX; Wang TC; Hu C; Li J; Wexler RR; Lam PY
    Org Lett; 2011 Apr; 13(7):1804-7. PubMed ID: 21381681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Late-Stage Sulfonyl Chloride Formation from Sulfonamides Enabled by Pyry-BF
    Gómez-Palomino A; Cornella J
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):18235-18239. PubMed ID: 31595619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective synthesis of β-fluoroamines from β-amino alcohols: application to the synthesis of LY503430.
    Duthion B; Gomez Pardo D; Cossy J
    Org Lett; 2010 Oct; 12(20):4620-3. PubMed ID: 20849096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trifluoromethyl-modified dipeptides by ZrCl4-promoted aza-Henry reactions.
    Fioravanti S; Pelagalli A; Pellacani L; Sciubba F; Vergari MC
    Amino Acids; 2014 Aug; 46(8):1961-70. PubMed ID: 24802246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A one-flask synthesis of Weinreb amides from chiral and achiral carboxylic acids using the deoxo-fluor fluorinating reagent.
    Tunoori AR; White JM; Georg GI
    Org Lett; 2000 Dec; 2(25):4091-3. PubMed ID: 11112651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 7-bromo derivative of 2-amino-2'-deoxytubercidin fluorinated at the sugar moiety.
    Seela F; Ding P; Peng X; Eickmeier H; Reuter H
    Acta Crystallogr C; 2007 Oct; 63(Pt 10):o600-2. PubMed ID: 17917233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of
    Liu J; Parker MFL; Wang S; Flavell RR; Toste FD; Wilson DM
    Chem; 2021 Aug; 7(8):2245-2255. PubMed ID: 35509497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formal nucleophilic substitution of bromocyclopropanes with amides en route to conformationally constrained β-amino acid derivatives.
    Prosser AR; Banning JE; Rubina M; Rubin M
    Org Lett; 2010 Sep; 12(18):3968-71. PubMed ID: 20726591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot synthesis of amides from aldehydes and amines via C-H bond activation.
    Cadoni R; Porcheddu A; Giacomelli G; De Luca L
    Org Lett; 2012 Oct; 14(19):5014-7. PubMed ID: 22978698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoselective synthesis of tetrahydrofuran lignans via BF(3) x OEt(2)-promoted reductive deoxygenation/epimerization of cyclic hemiketal: synthesis of (-)-odoratisol C, (-)-futokadsurin A, (-)-veraguensin, (+)-fragransin A(2), (+)-galbelgin, and (+)-talaumidin.
    Kim H; Wooten CM; Park Y; Hong J
    Org Lett; 2007 Sep; 9(20):3965-8. PubMed ID: 17764190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of α-CN and α-CF3 N-heterocycles through tandem nucleophilic additions.
    Han J; Xu B; Hammond GB
    Org Lett; 2011 Jul; 13(13):3450-3. PubMed ID: 21634368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A powerful reagent for synthesis of Weinreb amides directly from carboxylic acids.
    Niu T; Zhang W; Huang D; Xu C; Wang H; Hu Y
    Org Lett; 2009 Oct; 11(19):4474-7. PubMed ID: 19736958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.
    Mohy El Dine T; Erb W; Berhault Y; Rouden J; Blanchet J
    J Org Chem; 2015 May; 80(9):4532-44. PubMed ID: 25849872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultimate carcinogenic metabolites from aromatic and heterocyclic aromatic amines: a computational study in relation to their mutagenic potency.
    Borosky GL
    Chem Res Toxicol; 2007 Feb; 20(2):171-80. PubMed ID: 17261035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and preliminary biological evaluations of (+)-isocampholenic acid-derived amides.
    Grošelj U; Golobič A; Knez D; Hrast M; Gobec S; Ričko S; Svete J
    Mol Divers; 2016 Aug; 20(3):667-76. PubMed ID: 27017352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.