These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 19835781)
1. Identification and characterization of Dekkera bruxellensis, Candida pararugosa, and Pichia guilliermondii isolated from commercial red wines. Jensen SL; Umiker NL; Arneborg N; Edwards CG Food Microbiol; 2009 Dec; 26(8):915-21. PubMed ID: 19835781 [TBL] [Abstract][Full Text] [Related]
2. Spoilage yeasts in Patagonian winemaking: molecular and physiological features of Pichia guilliermondii indigenous isolates. Lopes CA; Jofré V; Sangorrín MP Rev Argent Microbiol; 2009; 41(3):177-84. PubMed ID: 19831317 [TBL] [Abstract][Full Text] [Related]
3. Enhanced volatile phenols in wine fermented with Saccharomyces cerevisiae and spoiled with Pichia guilliermondii and Dekkera bruxellensis. Sáez JS; Lopes CA; Kirs VC; Sangorrín MP Lett Appl Microbiol; 2010 Aug; 51(2):170-6. PubMed ID: 20565575 [TBL] [Abstract][Full Text] [Related]
4. The effect of sugar concentration and temperature on growth and volatile phenol production by Dekkera bruxellensis in wine. Barata A; Pagliara D; Piccininno T; Tarantino F; Ciardulli W; Malfeito-Ferreira M; Loureiro V FEMS Yeast Res; 2008 Nov; 8(7):1097-102. PubMed ID: 18637043 [TBL] [Abstract][Full Text] [Related]
5. Physiological and oenological traits of different Dekkera/Brettanomyces bruxellensis strains under wine-model conditions. Vigentini I; Romano A; Compagno C; Merico A; Molinari F; Tirelli A; Foschino R; Volonterio G FEMS Yeast Res; 2008 Nov; 8(7):1087-96. PubMed ID: 18565109 [TBL] [Abstract][Full Text] [Related]
6. Molecular typing of the yeast species Dekkera bruxellensis and Pichia guilliermondii recovered from wine related sources. Martorell P; Barata A; Malfeito-Ferreira M; Fernández-Espinar MT; Loureiro V; Querol A Int J Food Microbiol; 2006 Jan; 106(1):79-84. PubMed ID: 16229917 [TBL] [Abstract][Full Text] [Related]
7. Survival patterns of Dekkera bruxellensis in wines and inhibitory effect of sulphur dioxide. Barata A; Caldeira J; Botelheiro R; Pagliara D; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2008 Jan; 121(2):201-7. PubMed ID: 18077036 [TBL] [Abstract][Full Text] [Related]
8. Growth and volatile compound production by Brettanomyces/Dekkera bruxellensis in red wine. Romano A; Perello MC; de Revel G; Lonvaud-Funel A J Appl Microbiol; 2008 Jun; 104(6):1577-85. PubMed ID: 18194246 [TBL] [Abstract][Full Text] [Related]
9. The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine. du Toit WJ; Pretorius IS; Lonvaud-Funel A J Appl Microbiol; 2005; 98(4):862-71. PubMed ID: 15752332 [TBL] [Abstract][Full Text] [Related]
10. Thermal inactivation of the wine spoilage yeasts Dekkera/Brettanomyces. Couto JA; Neves F; Campos F; Hogg T Int J Food Microbiol; 2005 Oct; 104(3):337-44. PubMed ID: 15996781 [TBL] [Abstract][Full Text] [Related]
11. Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. González SS; Gallo L; Climent MA; Barrio E; Querol A Int J Food Microbiol; 2007 May; 116(1):11-8. PubMed ID: 17346840 [TBL] [Abstract][Full Text] [Related]
12. Dekkera and Brettanomyces growth and utilisation of hydroxycinnamic acids in synthetic media. Harris V; Ford CM; Jiranek V; Grbin PR Appl Microbiol Biotechnol; 2008 Apr; 78(6):997-1006. PubMed ID: 18322682 [TBL] [Abstract][Full Text] [Related]
13. Minimization of ethylphenol precursors in red wines via the formation of pyranoanthocyanins by selected yeasts. Benito S; Palomero F; Morata A; Uthurry C; Suárez-Lepe JA Int J Food Microbiol; 2009 Jun; 132(2-3):145-52. PubMed ID: 19439384 [TBL] [Abstract][Full Text] [Related]
14. Sulphur dioxide affects culturability and volatile phenol production by Brettanomyces/Dekkera bruxellensis. Agnolucci M; Rea F; Sbrana C; Cristani C; Fracassetti D; Tirelli A; Nuti M Int J Food Microbiol; 2010 Sep; 143(1-2):76-80. PubMed ID: 20705352 [TBL] [Abstract][Full Text] [Related]
15. Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. Comitini F; De Ingeniis J; Pepe L; Mannazzu I; Ciani M FEMS Microbiol Lett; 2004 Sep; 238(1):235-40. PubMed ID: 15336427 [TBL] [Abstract][Full Text] [Related]
16. Application of fluorescence in situ hybridisation (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations. Xufre A; Albergaria H; Inácio J; Spencer-Martins I; Gírio F Int J Food Microbiol; 2006 May; 108(3):376-84. PubMed ID: 16504329 [TBL] [Abstract][Full Text] [Related]
17. Molecular identification of Brettanomyces bruxellensis strains isolated from red wines and volatile phenol production. Oelofse A; Lonvaud-Funel A; du Toit M Food Microbiol; 2009 Jun; 26(4):377-85. PubMed ID: 19376458 [TBL] [Abstract][Full Text] [Related]
18. Impact of Australian Dekkera bruxellensis strains grown under oxygen-limited conditions on model wine composition and aroma. Curtin CD; Langhans G; Henschke PA; Grbin PR Food Microbiol; 2013 Dec; 36(2):241-7. PubMed ID: 24010603 [TBL] [Abstract][Full Text] [Related]
19. Hydroxycinnamic acid ethyl esters as precursors to ethylphenols in wine. Hixson JL; Sleep NR; Capone DL; Elsey GM; Curtin CD; Sefton MA; Taylor DK J Agric Food Chem; 2012 Mar; 60(9):2293-8. PubMed ID: 22324721 [TBL] [Abstract][Full Text] [Related]
20. Detection of Brettanomyces spp. in red wines using real-time PCR. Tofalo R; Schirone M; Corsetti A; Suzzi G J Food Sci; 2012 Sep; 77(9):M545-9. PubMed ID: 22908955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]