These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19836044)

  • 1. Limited-diffraction wave generation by approaching theoretical X-wave electrical driving signals with rectangular pulses.
    Castellanos L; Calás H; Ramos A
    Ultrasonics; 2010 Feb; 50(2):116-21. PubMed ID: 19836044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using time-reversal to generate generalized transversely localized transient waves (X-waves).
    Walker SC
    J Acoust Soc Am; 2009 Mar; 125(3):1549-57. PubMed ID: 19275313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental verification of nondiffracting X waves.
    Lu JY; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):441-6. PubMed ID: 18267654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of velocity and attenuation of leaky waves using an ultrasonic array.
    Titov S; Maev R; Bogachenkov A
    Ultrasonics; 2006 Feb; 44(2):182-7. PubMed ID: 16376398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A micro-machined source transducer for a parametric array in air.
    Lee H; Kang D; Moon W
    J Acoust Soc Am; 2009 Apr; 125(4):1879-93. PubMed ID: 19354363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An X wave transform.
    Lu JY; Liu A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1472-81. PubMed ID: 18238694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of two-dimensional array transducers for limited diffraction beams.
    Lu JY; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):724-39. PubMed ID: 18263261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of acousto-optic interactions on the determination of the diffracted field by an array obtained from displacement measurements.
    Certon D; Ferin G; Bou Matar O; Guyonvarch J; Remenieras JP; Patat F
    Ultrasonics; 2004 Apr; 42(1-9):465-71. PubMed ID: 15047330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking the motion of charges in a terahertz light field by femtosecond X-ray diffraction.
    Cavalleri A; Wall S; Simpson C; Statz E; Ward DW; Nelson KA; Rini M; Schoenlein RW
    Nature; 2006 Aug; 442(7103):664-6. PubMed ID: 16900195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PSpice circuital modelling of ultrasonic imaging transceivers including frequency-dependent acoustic losses and signal distortions in electronic stages.
    Ramos A; Ruíz A; San Emeterio JL; Sanz PT
    Ultrasonics; 2006 Dec; 44 Suppl 1():e995-1000. PubMed ID: 16797653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ray-based description of normal modes in a deep ocean acoustic waveguide.
    Virovlyansky AL; Kazarova AY; Lyubavin LY
    J Acoust Soc Am; 2009 Mar; 125(3):1362-73. PubMed ID: 19275293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations.
    Lu JY; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(1):19-31. PubMed ID: 18263114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computationally efficient sound field calculations for a circular array transducer.
    Lee C; Benkeser PJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(1):43-7. PubMed ID: 18263117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing limited diffraction beams.
    Lu JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):181-93. PubMed ID: 18244116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency X-ray beam chopper based on diffraction by surface acoustic waves.
    Tucoulou R; Roshchupkin DV; Mathon O; Schelokov IA; Brunel M; Ziegler E; Morawe C
    J Synchrotron Radiat; 1998 Nov; 5(Pt 6):1357-62. PubMed ID: 16687848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffraction field of a low frequency vibrator in soft tissues using transient elastography.
    Catheline S; Thomas JL; Wu F; Fink MA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):1013-9. PubMed ID: 18238506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal enhancement in Rayleigh wave interactions using a laser-ultrasound/EMAT imaging system.
    Boonsang S; Dewhurst RJ
    Ultrasonics; 2005 Jun; 43(7):512-23. PubMed ID: 15950025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lamb wave generation and reception with time-delay periodic linear arrays: a BEM simulation and experimental study.
    Zhu W; Rose JL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):654-64. PubMed ID: 18238466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagation of shear waves generated by a modulated finite amplitude radiation force in a viscoelastic medium.
    Giannoula A; Cobbold RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):575-88. PubMed ID: 19411216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams.
    Lu JY; Song TK; Kinnick RR; Greenleaf JF
    IEEE Trans Med Imaging; 1993; 12(4):819-29. PubMed ID: 18218478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.