These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 19836048)
1. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems. Vrouwenvelder JS; Buiter J; Riviere M; van der Meer WG; van Loosdrecht MC; Kruithof JC Water Res; 2010 Feb; 44(3):689-702. PubMed ID: 19836048 [TBL] [Abstract][Full Text] [Related]
2. Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction. Vrouwenvelder JS; Hinrichs C; Van der Meer WG; Van Loosdrecht MC; Kruithof JC Biofouling; 2009; 25(6):543-55. PubMed ID: 19437193 [TBL] [Abstract][Full Text] [Related]
3. Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem. Vrouwenvelder JS; Graf von der Schulenburg DA; Kruithof JC; Johns ML; van Loosdrecht MC Water Res; 2009 Feb; 43(3):583-94. PubMed ID: 19058830 [TBL] [Abstract][Full Text] [Related]
4. Impact of biofilm accumulation on transmembrane and feed channel pressure drop: effects of crossflow velocity, feed spacer and biodegradable nutrient. Dreszer C; Flemming HC; Zwijnenburg A; Kruithof JC; Vrouwenvelder JS Water Res; 2014 Mar; 50():200-11. PubMed ID: 24374131 [TBL] [Abstract][Full Text] [Related]
5. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems. Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091 [TBL] [Abstract][Full Text] [Related]
6. A novel scenario for biofouling control of spiral wound membrane systems. Vrouwenvelder JS; Van Loosdrecht MC; Kruithof JC Water Res; 2011 Jul; 45(13):3890-8. PubMed ID: 21592541 [TBL] [Abstract][Full Text] [Related]
7. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems. Siddiqui A; Farhat N; Bucs SS; Linares RV; Picioreanu C; Kruithof JC; van Loosdrecht MC; Kidwell J; Vrouwenvelder JS Water Res; 2016 Mar; 91():55-67. PubMed ID: 26773488 [TBL] [Abstract][Full Text] [Related]
8. Phosphate limitation to control biofouling. Vrouwenvelder JS; Beyer F; Dahmani K; Hasan N; Galjaard G; Kruithof JC; Van Loosdrecht MC Water Res; 2010 Jun; 44(11):3454-66. PubMed ID: 20394959 [TBL] [Abstract][Full Text] [Related]
9. Threshold concentrations of biomass and iron for pressure drop increase in spiral-wound membrane elements. Hijnen WA; Cornelissen ER; van der Kooij D Water Res; 2011 Feb; 45(4):1607-16. PubMed ID: 21185056 [TBL] [Abstract][Full Text] [Related]
10. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change. Dreszer C; Wexler AD; Drusová S; Overdijk T; Zwijnenburg A; Flemming HC; Kruithof JC; Vrouwenvelder JS Water Res; 2014 Dec; 67():243-54. PubMed ID: 25282092 [TBL] [Abstract][Full Text] [Related]
11. Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems. Bereschenko LA; Prummel H; Euverink GJ; Stams AJ; van Loosdrecht MC Water Res; 2011 Jan; 45(2):405-16. PubMed ID: 21111441 [TBL] [Abstract][Full Text] [Related]
12. Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations. Vrouwenvelder JS; Manolarakis SA; van der Hoek JP; van Paassen JA; van der Meer WG; van Agtmaal JM; Prummel HD; Kruithof JC; van Loosdrecht MC Water Res; 2008 Dec; 42(19):4856-68. PubMed ID: 18929382 [TBL] [Abstract][Full Text] [Related]
13. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators. Siddiqui A; Lehmann S; Bucs SS; Fresquet M; Fel L; Prest EIEC; Ogier J; Schellenberg C; van Loosdrecht MCM; Kruithof JC; Vrouwenvelder JS Water Res; 2017 Mar; 110():281-287. PubMed ID: 28027527 [TBL] [Abstract][Full Text] [Related]
14. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces. Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926 [TBL] [Abstract][Full Text] [Related]
15. Role of feed water biodegradable substrate concentration on biofouling: Biofilm characteristics, membrane performance and cleanability. Farhat NM; Javier L; Van Loosdrecht MCM; Kruithof JC; Vrouwenvelder JS Water Res; 2019 Mar; 150():1-11. PubMed ID: 30508707 [TBL] [Abstract][Full Text] [Related]
16. Validation of 3D simulations of reverse osmosis membrane biofouling. Pintelon TR; Creber SA; von der Schulenburg DA; Johns ML Biotechnol Bioeng; 2010 Jul; 106(4):677-89. PubMed ID: 20205206 [TBL] [Abstract][Full Text] [Related]
17. Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: a novel platform for eco-friendly biofouling mitigation. Wibisono Y; Yandi W; Golabi M; Nugraha R; Cornelissen ER; Kemperman AJ; Ederth T; Nijmeijer K Water Res; 2015 Mar; 71():171-86. PubMed ID: 25616114 [TBL] [Abstract][Full Text] [Related]
18. Impact of microfiltration treatment of secondary wastewater effluent on biofouling of reverse osmosis membranes. Herzberg M; Berry D; Raskin L Water Res; 2010 Jan; 44(1):167-76. PubMed ID: 19815248 [TBL] [Abstract][Full Text] [Related]
19. Quantitative assessment of the efficacy of spiral-wound membrane cleaning procedures to remove biofilms. Hijnen WA; Castillo C; Brouwer-Hanzens AH; Harmsen DJ; Cornelissen ER; van der Kooij D Water Res; 2012 Dec; 46(19):6369-81. PubMed ID: 23021522 [TBL] [Abstract][Full Text] [Related]
20. Effect of water temperature on biofouling development in reverse osmosis membrane systems. Farhat NM; Vrouwenvelder JS; Van Loosdrecht MCM; Bucs SS; Staal M Water Res; 2016 Oct; 103():149-159. PubMed ID: 27450353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]