These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 19836048)

  • 21. Vanillin, a potential agent to prevent biofouling of reverse osmosis membrane.
    Kappachery S; Paul D; Yoon J; Kweon JH
    Biofouling; 2010 Aug; 26(6):667-72. PubMed ID: 20661790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biofouling of reverse-osmosis membranes under different shear rates during tertiary wastewater desalination: microbial community composition.
    Al Ashhab A; Gillor O; Herzberg M
    Water Res; 2014 Dec; 67():86-95. PubMed ID: 25262553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biofouling control: the impact of biofilm dispersal and membrane flushing.
    de Vries HJ; Kleibusch E; Hermes GDA; van den Brink P; Plugge CM
    Water Res; 2021 Jun; 198():117163. PubMed ID: 33951583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced hydraulic cleanability of biofilms developed under a low phosphorus concentration in reverse osmosis membrane systems.
    Javier L; Farhat NM; Vrouwenvelder JS
    Water Res X; 2021 Jan; 10():100085. PubMed ID: 33385157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of ZnO embedded feed spacer on biofilm development in membrane systems.
    Ronen A; Semiat R; Dosoretz CG
    Water Res; 2013 Nov; 47(17):6628-38. PubMed ID: 24079967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biofiltration pretreatment for reverse osmosis (RO) membrane in a water reclamation system.
    Hu JY; Song LF; Ong SL; Phua ET; Ng WJ
    Chemosphere; 2005 Mar; 59(1):127-33. PubMed ID: 15698653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofouling control by phosphorus limitation strongly depends on the assimilable organic carbon concentration.
    Javier L; Farhat NM; Desmond P; Linares RV; Bucs S; Kruithof JC; Vrouwenvelder JS
    Water Res; 2020 Sep; 183():116051. PubMed ID: 32622233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of anionic fluidized ion exchange (FIX) pre-treatment on nanofiltration (NF) membrane fouling.
    Cornelissen ER; Chasseriaud D; Siegers WG; Beerendonk EF; van der Kooij D
    Water Res; 2010 May; 44(10):3283-93. PubMed ID: 20381111
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Internal and external mass transfer in biofilms grown at various flow velocities.
    Beyenal H; Lewandowski Z
    Biotechnol Prog; 2002; 18(1):55-61. PubMed ID: 11822900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of biofilm formation under different nutrient levels and the effect on biofouling of a reverse osmosis membrane system.
    Chen X; Suwarno SR; Chong TH; McDougald D; Kjelleberg S; Cohen Y; Fane AG; Rice SA
    Biofouling; 2013; 29(3):319-30. PubMed ID: 23528128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Package plant of extended aeration membrane bioreactors: a study on aeration intensity and biofouling control.
    Ujang Z; Ng SS; Nagaoka H
    Water Sci Technol; 2005; 51(10):335-42. PubMed ID: 16104438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined biofouling and scaling in membrane feed channels: a new modeling approach.
    Radu AI; Bergwerff L; van Loosdrecht MC; Picioreanu C
    Biofouling; 2015; 31(1):83-100. PubMed ID: 25587632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic development of biofilm on NF membranes at the Méry-sur-Oise plant, France.
    Houari A; Seyer D; Kecili K; Heim V; Martino PD
    Biofouling; 2013; 29(2):109-18. PubMed ID: 23320545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow.
    Picioreanu C; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 2001 Jan; 72(2):205-18. PubMed ID: 11114658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a hybrid ozonation biofilm-membrane filatration process for the production of drinking water.
    Leiknes T; Lazarova M; Odegaard H
    Water Sci Technol; 2005; 51(6-7):241-8. PubMed ID: 16003983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Online assessment of biofilm development, sloughing and forced detachment in tube reactor by means of magnetic resonance microscopy.
    Wagner M; Manz B; Volke F; Neu TR; Horn H
    Biotechnol Bioeng; 2010 Sep; 107(1):172-81. PubMed ID: 20506514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impacts of non-uniform filament feed spacers characteristics on the hydraulic and anti-fouling performances in the spacer-filled membrane channels: Experiment and numerical simulation.
    Lin WC; Shao RP; Wang XM; Huang X
    Water Res; 2020 Oct; 185():116251. PubMed ID: 32771564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of flow rate and substrate concentration on the formation and H2 production of photosynthetic bacterial biofilms.
    Wang YJ; Liao Q; Wang YZ; Zhu X; Li J
    Bioresour Technol; 2011 Jul; 102(13):6902-8. PubMed ID: 21531551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fouling resilient perforated feed spacers for membrane filtration.
    Kerdi S; Qamar A; Vrouwenvelder JS; Ghaffour N
    Water Res; 2018 Sep; 140():211-219. PubMed ID: 29715645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.