These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 19836048)

  • 41. Biofouling in forward osmosis systems: An experimental and numerical study.
    Bucs SS; Valladares Linares R; Vrouwenvelder JS; Picioreanu C
    Water Res; 2016 Dec; 106():86-97. PubMed ID: 27697688
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Threshold concentration of easily assimilable organic carton in feedwater for biofouling of spiral-wound membranes.
    Hijnen WA; Biraud D; Cornelissen ER; van der Kooij D
    Environ Sci Technol; 2009 Jul; 43(13):4890-5. PubMed ID: 19673281
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biofilm material properties as related to shear-induced deformation and detachment phenomena.
    Stoodley P; Cargo R; Rupp CJ; Wilson S; Klapper I
    J Ind Microbiol Biotechnol; 2002 Dec; 29(6):361-7. PubMed ID: 12483479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biofilm development in a membrane-aerated biofilm reactor: effect of flow velocity on performance.
    Casey E; Glennon B; Hamer G
    Biotechnol Bioeng; 2000 Feb; 67(4):476-86. PubMed ID: 10620763
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions.
    Horn H; Reiff H; Morgenroth E
    Biotechnol Bioeng; 2003 Mar; 81(5):607-17. PubMed ID: 12514810
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flowing biofilms as a transport mechanism for biomass through porous media under laminar and turbulent conditions in a laboratory reactor system.
    Stoodley P; Dodds I; De Beer D; Scott HL; Boyle JD
    Biofouling; 2005; 21(3-4):161-8. PubMed ID: 16371336
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The correlation between biofilm biopolymer composition and membrane fouling in submerged membrane bioreactors.
    Luo J; Zhang J; Tan X; McDougald D; Zhuang G; Fane AG; Kjelleberg S; Cohen Y; Rice SA
    Biofouling; 2014 Oct; 30(9):1093-110. PubMed ID: 25367774
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Utilisation of a packed-bed biofilm reactor for the determination of the potential of biofilm accumulation in water systems.
    Morato J; Codony F; Mas J
    Biofouling; 2005; 21(3-4):151-60. PubMed ID: 16371335
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology.
    Stoodley P; Lewandowski Z; Boyle JD; Lappin-Scott HM
    Biotechnol Bioeng; 1999 Oct; 65(1):83-92. PubMed ID: 10440674
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers.
    Paris T; Skali-Lami S; Block JC
    Biotechnol Bioeng; 2007 Aug; 97(6):1550-61. PubMed ID: 17216655
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Elucidation and control of biofilm formation processes in water treatment and distribution using the Unified Biofilm Approach.
    van der Kooij D; Vrouwenvelder JS; Veenendaal HR
    Water Sci Technol; 2003; 47(5):83-90. PubMed ID: 12701911
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biofouling assessment using an infrared monitor.
    Tinham P; Bott TR
    Water Sci Technol; 2003; 47(5):39-43. PubMed ID: 12701904
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: A 20-year review on research evolvement.
    Lin W; Zhang Y; Li D; Wang XM; Huang X
    Water Res; 2021 Jun; 198():117146. PubMed ID: 33945947
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct microscopic observation of forward osmosis membrane fouling.
    Wang Y; Wicaksana F; Tang CY; Fane AG
    Environ Sci Technol; 2010 Sep; 44(18):7102-9. PubMed ID: 20735033
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Towards optimum permeability reduction in porous media using biofilm growth simulations.
    Pintelon TR; Graf von der Schulenburg DA; Johns ML
    Biotechnol Bioeng; 2009 Jul; 103(4):767-79. PubMed ID: 19309753
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Factors affecting filtration characteristics in membrane-coupled moving bed biofilm reactor.
    Lee WN; Kang IJ; Lee CH
    Water Res; 2006 May; 40(9):1827-35. PubMed ID: 16631228
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa.
    Herzberg M; Elimelech M
    ISME J; 2008 Feb; 2(2):180-94. PubMed ID: 18049459
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of operating conditions on the adhesive strength of Pseudomonas fluorescens biofilms in tubes.
    Chen MJ; Zhang Z; Bott TR
    Colloids Surf B Biointerfaces; 2005 Jun; 43(2):61-71. PubMed ID: 15913966
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors.
    Tijhuis L; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1994 Aug; 44(5):595-608. PubMed ID: 18618795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.