These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 19836093)

  • 1. Insertional mutagenesis of Listeria monocytogenes 568 reveals genes that contribute to enhanced thermotolerance.
    Ells TC; Speers RA; Hansen LT
    Int J Food Microbiol; 2009 Nov; 136(1):1-9. PubMed ID: 19836093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide screen for Listeria monocytogenes genes important for growth at high temperatures.
    van der Veen S; Abee T; de Vos WM; Wells-Bennik MH
    FEMS Microbiol Lett; 2009 Jun; 295(2):195-203. PubMed ID: 19456866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of genes involved in Listeria monocytogenes biofilm formation by mariner-based transposon mutagenesis.
    Chang Y; Gu W; Fischer N; McLandsborough L
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2051-62. PubMed ID: 22120623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat and acid tolerance of Listeria monocytogenes after exposure to single and multiple sublethal stresses.
    Skandamis PN; Yoon Y; Stopforth JD; Kendall PA; Sofos JN
    Food Microbiol; 2008 Apr; 25(2):294-303. PubMed ID: 18206772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lmo1078 gene encoding a putative UDP-glucose pyrophosphorylase is involved in growth of Listeria monocytogenes at low temperature.
    Chassaing D; Auvray F
    FEMS Microbiol Lett; 2007 Oct; 275(1):31-7. PubMed ID: 17666069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the effect of the redox potential and pH of heating media on Listeria monocytogenes heat resistance.
    Ignatova M; Leguerinel I; Guilbot M; Prévost H; Guillou S
    J Appl Microbiol; 2008 Sep; 105(3):875-83. PubMed ID: 18410341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mutagenesis on biofilm formation of Listeria monocytogenes by Tn917 transposon insertion].
    Chen YH; Shi XM
    Wei Sheng Wu Xue Bao; 2005 Dec; 45(6):952-4. PubMed ID: 16496710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genes involved in Listeria monocytogenes biofilm formation at a simulated food processing plant temperature of 15 °C.
    Piercey MJ; Hingston PA; Truelstrup Hansen L
    Int J Food Microbiol; 2016 Apr; 223():63-74. PubMed ID: 26900648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ampicillin resistance in Listeria monocytogenes acquired as a result of transposon mutagenesis.
    Poroś-Głuchowska J; Kłoszewska M; Markiewicz Z
    Acta Microbiol Pol; 2003; 52(2):131-42. PubMed ID: 14594400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insertional mutagenesis of Listeria monocytogenes with a novel Tn917 derivative that allows direct cloning of DNA flanking transposon insertions.
    Camilli A; Portnoy A; Youngman P
    J Bacteriol; 1990 Jul; 172(7):3738-44. PubMed ID: 2163385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposon-induced mutants of Listeria monocytogenes incapable of growth at low temperature (4 degrees C).
    Zheng W; Kathariou S
    FEMS Microbiol Lett; 1994 Sep; 121(3):287-91. PubMed ID: 7926683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genes Associated with Desiccation and Osmotic Stress in Listeria monocytogenes as Revealed by Insertional Mutagenesis.
    Hingston PA; Piercey MJ; Truelstrup Hansen L
    Appl Environ Microbiol; 2015 Aug; 81(16):5350-62. PubMed ID: 26025900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of mild-heat treatment following high-pressure processing to prevent recovery of pressure-injured Listeria monocytogenes in milk.
    Koseki S; Mizuno Y; Yamamoto K
    Food Microbiol; 2008 Apr; 25(2):288-93. PubMed ID: 18206771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat resistance of Listeria monocytogenes.
    Suarez Fernandez G
    Acta Microbiol Hung; 1989; 36(2-3):277-80. PubMed ID: 2517173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of environmental parameters (temperature, pH and a(w)) on the individual cell lag phase and generation time of Listeria monocytogenes.
    Francois K; Devlieghere F; Standaert AR; Geeraerd AH; Van Impe JF; Debevere J
    Int J Food Microbiol; 2006 May; 108(3):326-35. PubMed ID: 16488043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Listeria innocua surrogates for Listeria monocytogenes in hamburger patties.
    Friedly EC; Crandall PG; Ricke S; O'Bryan CA; Martin EM; Boyd LM
    J Food Sci; 2008 May; 73(4):M174-8. PubMed ID: 18460133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal resistance of Listeria monocytogenes.
    Lemaire V; Cerf O; Audurier A
    Ann Rech Vet; 1989; 20(4):493-500. PubMed ID: 2515785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant construction and integration vector-mediated gene complementation in Listeria monocytogenes.
    Azizoglu RO; Elhanafi D; Kathariou S
    Methods Mol Biol; 2014; 1157():201-11. PubMed ID: 24792560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the effect of lethal and sublethal pH and a(w) stresses on the inactivation or growth of Listeria monocytogenes and Salmonella Typhimurium.
    Tiganitas A; Zeaki N; Gounadaki AS; Drosinos EH; Skandamis PN
    Int J Food Microbiol; 2009 Aug; 134(1-2):104-12. PubMed ID: 19356819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat resistance of Listeria monocytogenes.
    Lemaire V; Cerf O; Audurier A
    Acta Microbiol Hung; 1989; 36(2-3):281-4. PubMed ID: 2517174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.