BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 19836163)

  • 1. PET CT thresholds for radiotherapy target definition in non-small-cell lung cancer: how close are we to the pathologic findings?
    Wu K; Ung YC; Hornby J; Freeman M; Hwang D; Tsao MS; Dahele M; Darling G; Maziak DE; Tirona R; Mah K; Wong CS
    Int J Radiat Oncol Biol Phys; 2010 Jul; 77(3):699-706. PubMed ID: 19836163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate?
    Biehl KJ; Kong FM; Dehdashti F; Jin JY; Mutic S; El Naqa I; Siegel BA; Bradley JD
    J Nucl Med; 2006 Nov; 47(11):1808-12. PubMed ID: 17079814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning.
    Hong R; Halama J; Bova D; Sethi A; Emami B
    Int J Radiat Oncol Biol Phys; 2007 Mar; 67(3):720-6. PubMed ID: 17293230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscopic disease extension in three dimensions for non-small-cell lung cancer: development of a prediction model using pathology-validated positron emission tomography and computed tomography features.
    van Loon J; Siedschlag C; Stroom J; Blauwgeers H; van Suylen RJ; Knegjens J; Rossi M; van Baardwijk A; Boersma L; Klomp H; Vogel W; Burgers S; Gilhuijs K
    Int J Radiat Oncol Biol Phys; 2012 Jan; 82(1):448-56. PubMed ID: 20971575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in background intensity affects PET-based gross tumor volume delineation in non-small-cell lung cancer: the need for individualized information.
    Chen GH; Yao ZF; Fan XW; Zhang YJ; Gao HQ; Qian W; Wu KL; Jiang GL
    Radiother Oncol; 2013 Oct; 109(1):71-6. PubMed ID: 24060171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer.
    Ashamalla H; Rafla S; Parikh K; Mokhtar B; Goswami G; Kambam S; Abdel-Dayem H; Guirguis A; Ross P; Evola A
    Int J Radiat Oncol Biol Phys; 2005 Nov; 63(4):1016-23. PubMed ID: 15979817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Impact of PET/CT on precise radiotherapy planning for non-small cell lung cancer].
    Gong HY; Yu JM; Fu Z; Li BS; Li JB; Liu TH
    Zhonghua Zhong Liu Za Zhi; 2006 Jan; 28(1):54-7. PubMed ID: 16737623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist?
    Hanna GG; Carson KJ; Lynch T; McAleese J; Cosgrove VP; Eakin RL; Stewart DP; Zatari A; O'Sullivan JM; Hounsell AR
    Int J Radiat Oncol Biol Phys; 2010 Nov; 78(4):1040-51. PubMed ID: 20350798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer.
    Nestle U; Kremp S; Schaefer-Schuler A; Sebastian-Welsch C; Hellwig D; Rübe C; Kirsch CM
    J Nucl Med; 2005 Aug; 46(8):1342-8. PubMed ID: 16085592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT.
    Hanna GG; McAleese J; Carson KJ; Stewart DP; Cosgrove VP; Eakin RL; Zatari A; Lynch T; Jarritt PH; Young VA; O'Sullivan JM; Hounsell AR
    Int J Radiat Oncol Biol Phys; 2010 May; 77(1):24-30. PubMed ID: 19665324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer.
    Deniaud-Alexandre E; Touboul E; Lerouge D; Grahek D; Foulquier JN; Petegnief Y; Grès B; El Balaa H; Keraudy K; Kerrou K; Montravers F; Milleron B; Lebeau B; Talbot JN
    Int J Radiat Oncol Biol Phys; 2005 Dec; 63(5):1432-41. PubMed ID: 16125870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of FDG PET/CT on delineation of the gross tumor volume for radiation planning in non-small-cell lung cancer.
    Spratt DE; Diaz R; McElmurray J; Csiki I; Duggan D; Lu B; Delbeke D
    Clin Nucl Med; 2010 Apr; 35(4):237-43. PubMed ID: 20305410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of tumor volumes as determined by pathologic examination and FDG-PET/CT images of non-small-cell lung cancer: a pilot study.
    Yu J; Li X; Xing L; Mu D; Fu Z; Sun X; Sun X; Yang G; Zhang B; Sun X; Ling CC
    Int J Radiat Oncol Biol Phys; 2009 Dec; 75(5):1468-74. PubMed ID: 19464822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of [18F]fluorodeoxyglucose PET-CT staging on treatment planning in radiotherapy incorporating elective nodal irradiation for non-small-cell lung cancer: a prospective study.
    Kolodziejczyk M; Kepka L; Dziuk M; Zawadzka A; Szalus N; Gizewska A; Bujko K
    Int J Radiat Oncol Biol Phys; 2011 Jul; 80(4):1008-14. PubMed ID: 20656419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer.
    Gondi V; Bradley K; Mehta M; Howard A; Khuntia D; Ritter M; Tomé W
    Int J Radiat Oncol Biol Phys; 2007 Jan; 67(1):187-95. PubMed ID: 17189070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproducibility of "intelligent" contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method.
    Bayne M; Hicks RJ; Everitt S; Fimmell N; Ball D; Reynolds J; Lau E; Pitman A; Ware R; MacManus M
    Int J Radiat Oncol Biol Phys; 2010 Jul; 77(4):1151-7. PubMed ID: 20610039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining radiotherapy target volumes using 18F-fluoro-deoxy-glucose positron emission tomography/computed tomography: still a Pandora's box?
    Devic S; Tomic N; Faria S; Menard S; Lisbona R; Lehnert S
    Int J Radiat Oncol Biol Phys; 2010 Dec; 78(5):1555-62. PubMed ID: 20646840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [18FDG] PET-CT-based intensity-modulated radiotherapy treatment planning of head and neck cancer.
    El-Bassiouni M; Ciernik IF; Davis JB; El-Attar I; Reiner B; Burger C; Goerres GW; Studer GM
    Int J Radiat Oncol Biol Phys; 2007 Sep; 69(1):286-93. PubMed ID: 17707283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes.
    van Baardwijk A; Bosmans G; Boersma L; Buijsen J; Wanders S; Hochstenbag M; van Suylen RJ; Dekker A; Dehing-Oberije C; Houben R; Bentzen SM; van Kroonenburgh M; Lambin P; De Ruysscher D
    Int J Radiat Oncol Biol Phys; 2007 Jul; 68(3):771-8. PubMed ID: 17398018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer.
    Grills IS; Yan D; Black QC; Wong CY; Martinez AA; Kestin LL
    Int J Radiat Oncol Biol Phys; 2007 Mar; 67(3):709-19. PubMed ID: 17197120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.