BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19836328)

  • 1. How ATPases unravel a mystery.
    Gallastegui N; Groll M
    Structure; 2009 Oct; 17(10):1279-81. PubMed ID: 19836328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycobacterium tuberculosis proteasomal ATPase Mpa has a β-grasp domain that hinders docking with the proteasome core protease.
    Wu Y; Hu K; Li D; Bai L; Yang S; Jastrab JB; Xiao S; Hu Y; Zhang S; Darwin KH; Wang T; Li H
    Mol Microbiol; 2017 Jul; 105(2):227-241. PubMed ID: 28419599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbiology. A protein pupylation paradigm.
    Mukherjee S; Orth K
    Science; 2008 Nov; 322(5904):1062-3. PubMed ID: 19008436
    [No Abstract]   [Full Text] [Related]  

  • 4. Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes.
    Striebel F; Kress W; Weber-Ban E
    Curr Opin Struct Biol; 2009 Apr; 19(2):209-17. PubMed ID: 19362814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus.
    Striebel F; Hunkeler M; Summer H; Weber-Ban E
    EMBO J; 2010 Apr; 29(7):1262-71. PubMed ID: 20203624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa.
    Wang T; Li H; Lin G; Tang C; Li D; Nathan C; Darwin KH; Li H
    Structure; 2009 Oct; 17(10):1377-85. PubMed ID: 19836337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of substrates of the Mycobacterium tuberculosis proteasome.
    Pearce MJ; Arora P; Festa RA; Butler-Wu SM; Gokhale RS; Darwin KH
    EMBO J; 2006 Nov; 25(22):5423-32. PubMed ID: 17082771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate of pup inside the Mycobacterium proteasome studied by in-cell NMR.
    Maldonado AY; Burz DS; Reverdatto S; Shekhtman A
    PLoS One; 2013; 8(9):e74576. PubMed ID: 24040288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mycobacterial proteasomal ATPase Mpa forms a gapped ring to engage the 20S proteasome.
    Yin Y; Kovach A; Hsu HC; Darwin KH; Li H
    J Biol Chem; 2021; 296():100713. PubMed ID: 33930464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant ATPases of the yeast 26S proteasome activate protein degradation by the 20S proteasome.
    Takeuchi J; Tamura T
    FEBS Lett; 2004 May; 565(1-3):39-42. PubMed ID: 15135049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of prokaryotic ubiquitin-like protein engagement and translocation by the mycobacterial Mpa-proteasome complex.
    Kavalchuk M; Jomaa A; Müller AU; Weber-Ban E
    Nat Commun; 2022 Jan; 13(1):276. PubMed ID: 35022401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa.
    Sutter M; Striebel F; Damberger FF; Allain FH; Weber-Ban E
    FEBS Lett; 2009 Oct; 583(19):3151-7. PubMed ID: 19761766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins.
    Smith DM; Kafri G; Cheng Y; Ng D; Walz T; Goldberg AL
    Mol Cell; 2005 Dec; 20(5):687-98. PubMed ID: 16337593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteasomes and their associated ATPases: a destructive combination.
    Smith DM; Benaroudj N; Goldberg A
    J Struct Biol; 2006 Oct; 156(1):72-83. PubMed ID: 16919475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycobacterium tuberculosis ClpC1: characterization and role of the N-terminal domain in its function.
    Kar NP; Sikriwal D; Rath P; Choudhary RK; Batra JK
    FEBS J; 2008 Dec; 275(24):6149-58. PubMed ID: 19016865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function analysis of the acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis.
    Dym O; Albeck S; Peleg Y; Schwarz A; Shakked Z; Burstein Y; Zimhony O
    J Mol Biol; 2009 Nov; 393(4):937-50. PubMed ID: 19733180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis.
    Bai L; Hu K; Wang T; Jastrab JB; Darwin KH; Li H
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):E1983-92. PubMed ID: 27001842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis.
    Pearce MJ; Mintseris J; Ferreyra J; Gygi SP; Darwin KH
    Science; 2008 Nov; 322(5904):1104-7. PubMed ID: 18832610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the means to the end in ATP-dependent proteases.
    Hochstrasser M; Wang J
    Nat Struct Biol; 2001 Apr; 8(4):294-6. PubMed ID: 11276243
    [No Abstract]   [Full Text] [Related]  

  • 20. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide.
    Darwin KH; Ehrt S; Gutierrez-Ramos JC; Weich N; Nathan CF
    Science; 2003 Dec; 302(5652):1963-6. PubMed ID: 14671303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.