These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19836357)

  • 21. Artificial microRNA-based neurokinin-1 receptor gene silencing reduces alcohol consumption in mice.
    Baek MN; Jung KH; Halder D; Choi MR; Lee BH; Lee BC; Jung MH; Choi IG; Chung MK; Oh DY; Chai YG
    Neurosci Lett; 2010 May; 475(3):124-8. PubMed ID: 20347940
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System.
    Bhagwat B; Chi M; Han D; Tang H; Tang G; Xiang Y
    Methods Mol Biol; 2016; 1405():149-62. PubMed ID: 26843173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artificial miRNAs as therapeutic tools: Challenges and opportunities.
    Kotowska-Zimmer A; Pewinska M; Olejniczak M
    Wiley Interdiscip Rev RNA; 2021 Jul; 12(4):e1640. PubMed ID: 33386705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large-scale genome analysis reveals unique features of microRNAs.
    Zhang B; Stellwag EJ; Pan X
    Gene; 2009 Aug; 443(1-2):100-9. PubMed ID: 19422892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MicroRNAs with analogous target complementarities perform with highly variable efficacies in Arabidopsis.
    Deveson I; Li J; Millar AA
    FEBS Lett; 2013 Nov; 587(22):3703-8. PubMed ID: 24103298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene silencing in plants using artificial microRNAs and other small RNAs.
    Ossowski S; Schwab R; Weigel D
    Plant J; 2008 Feb; 53(4):674-90. PubMed ID: 18269576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. miROrtho: computational survey of microRNA genes.
    Gerlach D; Kriventseva EV; Rahman N; Vejnar CE; Zdobnov EM
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D111-7. PubMed ID: 18927110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Construction and screening of the artificial miRNA plasmids targeting porcine Toll-like receptor 7 gene].
    Song H; Jiang C; Sun H
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2013 Jan; 29(1):18-21, 26. PubMed ID: 23294713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved method for constructing plant amiRNA vectors with blue-white screening and MAGIC.
    Yan H; Zhong X; Jiang S; Zhai C; Ma L
    Biotechnol Lett; 2011 Aug; 33(8):1683-8. PubMed ID: 21479629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Customization of Artificial MicroRNA Design.
    Van Vu T; Do VN
    Methods Mol Biol; 2017; 1509():235-243. PubMed ID: 27826932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A high-efficiency gene silencing in plants using two-hit asymmetrical artificial MicroRNAs.
    Teotia S; Wang X; Zhou N; Wang M; Liu H; Qin J; Han D; Li C; Li CE; Pan S; Tang H; Kang W; Zhang Z; Tang X; Peng T; Tang G
    Plant Biotechnol J; 2023 Sep; 21(9):1799-1811. PubMed ID: 37392408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Artificial MicroRNAs for Multiplex Gene Silencing and Simplified Transgenic Screen.
    Zhang N; Zhang D; Chen SL; Gong BQ; Guo Y; Xu L; Zhang XN; Li JF
    Plant Physiol; 2018 Nov; 178(3):989-1001. PubMed ID: 30291175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts.
    Khraiwesh B; Ossowski S; Weigel D; Reski R; Frank W
    Plant Physiol; 2008 Oct; 148(2):684-93. PubMed ID: 18753280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Undesired small RNAs originate from an artificial microRNA precursor in transgenic petunia (Petunia hybrida).
    Guo Y; Han Y; Ma J; Wang H; Sang X; Li M
    PLoS One; 2014; 9(6):e98783. PubMed ID: 24897430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AmiRNA Designer - new method of artificial miRNA design.
    Mickiewicz A; Rybarczyk A; Sarzynska J; Figlerowicz M; Blazewicz J
    Acta Biochim Pol; 2016; 63(1):71-77. PubMed ID: 26784022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MicroRNA silencing in primates: towards development of novel therapeutics.
    Petri A; Lindow M; Kauppinen S
    Cancer Res; 2009 Jan; 69(2):393-5. PubMed ID: 19147547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering elements for gene silencing: the artificial microRNAs technology.
    Manavella PA; Rubio-Somoza I
    Methods Mol Biol; 2011; 732():121-30. PubMed ID: 21431709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of BmNPV replication in silkworm cells using inducible and regulated artificial microRNA precursors targeting the essential viral gene lef-11.
    Zhang J; He Q; Zhang CD; Chen XY; Chen XM; Dong ZQ; Li N; Kuang XX; Cao MY; Lu C; Pan MH
    Antiviral Res; 2014 Apr; 104():143-52. PubMed ID: 24486953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation.
    Bhagwat B; Chi M; Su L; Tang H; Tang G; Xiang Y
    J Genet Genomics; 2013 May; 40(5):261-70. PubMed ID: 23706301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly specific gene silencing by artificial microRNAs in Arabidopsis.
    Schwab R; Ossowski S; Riester M; Warthmann N; Weigel D
    Plant Cell; 2006 May; 18(5):1121-33. PubMed ID: 16531494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.